Java学习指南
  • Java 编程的逻辑
  • Java进阶
  • Java FrameWorks
  • 了解 USB Type-A,B,C 三大标准接口
  • 深入浅出DDD
  • 重构:改善既有代码的设计
  • 面试大纲
  • 云原生
    • 什么是无服务器(what is serverless)?
  • 博客
    • 深入分析Log4j 漏洞
  • 博客
    • Serverless之快速搭建Spring Boot应用
  • 博客
    • 使用 Prometheus + Grafana + Spring Boot Actuator 监控应用
  • 博客
    • 使用 Prometheus + Grafana 监控 MySQL
  • 博客
    • 使用Github Actions + Docker 部署Spring Boot应用
  • 博客
    • Redis分布式锁之Redisson的原理和实践
  • 博客
    • 数据库中的树结构应该怎样去设计
  • 学习&成长
    • 如何成为技术大牛
  • 开发工具
    • Git Commit Message Guidelines
  • 开发工具
    • git命名大全
  • 开发工具
    • Gradle vs Maven Comparison
  • 开发工具
    • Swagger2常用注解及其说明
  • 开发工具
    • 简明 VIM 练级攻略
  • 微服务
    • 十大微服务设计模式和原则
  • 微服务
    • 微服务下的身份认证和令牌管理
  • 微服务
    • 微服务坏味道之循环依赖
  • 设计模式
    • 设计模式 - JDK中的设计模式
  • 设计模式
    • 设计模式 - Java三种代理模式
  • 设计模式
    • 设计模式 - 六大设计原则
  • 设计模式
    • 设计模式 - 单例模式
  • 设计模式
    • 设计模式 - 命名模式
  • 设计模式
    • 设计模式 - 备忘录模式
  • 设计模式
    • 设计模式 - 概览
  • 设计模式
    • 设计模式 - 没用的设计模式
  • 质量&效率
    • Homebrew 替换国内镜像源
  • 质量&效率
    • 工作中如何做好技术积累
  • Java FrameWorks
    • Logback
      • 自定义 logback 日志过滤器
  • Java FrameWorks
    • Mybatis
      • MyBatis(十三) - 整合Spring
  • Java FrameWorks
    • Mybatis
      • MyBatis(十二) - 一些API
  • Java FrameWorks
    • Mybatis
      • Mybatis(一) - 概述
  • Java FrameWorks
    • Mybatis
      • Mybatis(七) - 结果集的封装与映射
  • Java FrameWorks
    • Mybatis
      • Mybatis(三) - mapper.xml及其加载机制
  • Java FrameWorks
    • Mybatis
      • Mybatis(九) - 事务
  • Java FrameWorks
    • Mybatis
      • Mybatis(二) - 全局配置文件及其加载机制
  • Java FrameWorks
    • Mybatis
      • Mybatis(五) - SqlSession执行流程
  • Java FrameWorks
    • Mybatis
      • Mybatis(八) - 缓存
  • Java FrameWorks
    • Mybatis
      • Mybatis(六) - 动态SQL的参数绑定与执行
  • Java FrameWorks
    • Mybatis
      • Mybatis(十) - 插件
  • Java FrameWorks
    • Mybatis
      • Mybatis(十一) - 日志
  • Java FrameWorks
    • Mybatis
      • Mybatis(四) - Mapper接口解析
  • Java FrameWorks
    • Netty
      • Netty 可靠性分析
  • Java FrameWorks
    • Netty
      • Netty - Netty 线程模型
  • Java FrameWorks
    • Netty
      • Netty堆外内存泄露排查盛宴
  • Java FrameWorks
    • Netty
      • Netty高级 - 高性能之道
  • Java FrameWorks
    • Shiro
      • Shiro + JWT + Spring Boot Restful 简易教程
  • Java FrameWorks
    • Shiro
      • 非常详尽的 Shiro 架构解析!
  • Java FrameWorks
    • Spring
      • Spring AOP 使用介绍,从前世到今生
  • Java FrameWorks
    • Spring
      • Spring AOP 源码解析
  • Java FrameWorks
    • Spring
      • Spring Event 实现原理
  • Java FrameWorks
    • Spring
      • Spring Events
  • Java FrameWorks
    • Spring
      • Spring IOC容器源码分析
  • Java FrameWorks
    • Spring
      • Spring Integration简介
  • Java FrameWorks
    • Spring
      • Spring MVC 框架中拦截器 Interceptor 的使用方法
  • Java FrameWorks
    • Spring
      • Spring bean 解析、注册、实例化流程源码剖析
  • Java FrameWorks
    • Spring
      • Spring validation中@NotNull、@NotEmpty、@NotBlank的区别
  • Java FrameWorks
    • Spring
      • Spring 如何解决循环依赖?
  • Java FrameWorks
    • Spring
      • Spring 异步实现原理与实战分享
  • Java FrameWorks
    • Spring
      • Spring中的“for update”问题
  • Java FrameWorks
    • Spring
      • Spring中的设计模式
  • Java FrameWorks
    • Spring
      • Spring事务失效的 8 大原因
  • Java FrameWorks
    • Spring
      • Spring事务管理详解
  • Java FrameWorks
    • Spring
      • Spring计时器StopWatch使用
  • Java FrameWorks
    • Spring
      • 详述 Spring MVC 框架中拦截器 Interceptor 的使用方法
  • Java FrameWorks
    • Spring
      • 透彻的掌握 Spring 中@transactional 的使用
  • Java
    • Java IO&NIO&AIO
      • Java IO - BIO 详解
  • Java
    • Java IO&NIO&AIO
      • Java NIO - IO多路复用详解
  • Java
    • Java IO&NIO&AIO
      • Java N(A)IO - Netty
  • Java
    • Java IO&NIO&AIO
      • Java IO - Unix IO模型
  • Java
    • Java IO&NIO&AIO
      • Java IO - 分类
  • Java
    • Java IO&NIO&AIO
      • Java NIO - 基础详解
  • Java
    • Java IO&NIO&AIO
      • Java IO - 常见类使用
  • Java
    • Java IO&NIO&AIO
      • Java AIO - 异步IO详解
  • Java
    • Java IO&NIO&AIO
      • Java IO概述
  • Java
    • Java IO&NIO&AIO
      • Java IO - 设计模式
  • Java
    • Java IO&NIO&AIO
      • Java NIO - 零拷贝实现
  • Java
    • Java JVM
      • JVM 优化经验总结
  • Java
    • Java JVM
      • JVM 内存结构
  • Java
    • Java JVM
      • JVM参数设置
  • Java
    • Java JVM
      • Java 内存模型
  • Java
    • Java JVM
      • 从实际案例聊聊Java应用的GC优化
  • Java
    • Java JVM
      • Java 垃圾回收器G1详解
  • Java
    • Java JVM
      • 垃圾回收器Shenandoah GC详解
  • Java
    • Java JVM
      • 垃圾回收器ZGC详解
  • Java
    • Java JVM
      • 垃圾回收基础
  • Java
    • Java JVM
      • 如何优化Java GC
  • Java
    • Java JVM
      • 类加载机制
  • Java
    • Java JVM
      • 类字节码详解
  • Java
    • Java 基础
      • Java hashCode() 和 equals()
  • Java
    • Java 基础
      • Java 基础 - Java native方法以及JNI实践
  • Java
    • Java 基础
      • Java serialVersionUID 有什么作用?
  • Java
    • Java 基础
      • Java 泛型的类型擦除
  • Java
    • Java 基础
      • Java 基础 - Unsafe类解析
  • Java
    • Java 基础
      • Difference Between Statement and PreparedStatement
  • Java
    • Java 基础
      • Java 基础 - SPI机制详解
  • Java
    • Java 基础
      • Java 基础 - final
  • Java
    • Java 基础
      • Java中static关键字详解
  • Java
    • Java 基础
      • 为什么说Java中只有值传递?
  • Java
    • Java 基础
      • Java 基础 - 即时编译器原理解析及实践
  • Java
    • Java 基础
      • Java 基础 - 反射
  • Java
    • Java 基础
      • Java多态的面试题
  • Java
    • Java 基础
      • Java 基础 - 异常机制详解
  • Java
    • Java 基础
      • 为什么要有抽象类?
  • Java
    • Java 基础
      • 接口的本质
  • Java
    • Java 基础
      • Java 基础 - 枚举
  • Java
    • Java 基础
      • Java 基础 - 泛型机制详解
  • Java
    • Java 基础
      • Java 基础 - 注解机制详解
  • Java
    • Java 基础
      • 为什么 String hashCode 方法选择数字31作为乘子
  • Java
    • Java 并发
      • Java 并发 - 14个Java并发容器
  • Java
    • Java 并发
      • Java 并发 - AQS
  • Java
    • Java 并发
      • Java 并发 - BlockingQueue
  • Java
    • Java 并发
      • Java 并发 - CAS
  • Java
    • Java 并发
      • Java 并发 - Condition接口
  • Java
    • Java 并发
      • Java 并发 - CopyOnWriteArrayList
  • Java
    • Java 并发
      • Java 并发 - CountDownLatch、CyclicBarrier和Phaser对比
  • Java
    • Java 并发
      • Java 并发 - Fork&Join框架
  • Java
    • Java 并发
      • Java 并发 - Java CompletableFuture 详解
  • Java
    • Java 并发
      • Java 并发 - Java 线程池
  • Java
    • Java 并发
      • Java 并发 - Lock接口
  • Java
    • Java 并发
      • Java 并发 - ReentrantLock
  • Java
    • Java 并发
      • Java 并发 - ReentrantReadWriteLock
  • Java
    • Java 并发
      • Java 并发 - Synchronized
  • Java
    • Java 并发
      • Java 并发 - ThreadLocal 内存泄漏问题
  • Java
    • Java 并发
      • Java 并发 - ThreadLocal
  • Java
    • Java 并发
      • Java 并发 - Volatile
  • Java
    • Java 并发
      • Java 并发 - 从ReentrantLock的实现看AQS的原理及应用
  • Java
    • Java 并发
      • Java 并发 - 公平锁和非公平锁
  • Java
    • Java 并发
      • Java 并发 - 内存模型
  • Java
    • Java 并发
      • Java 并发 - 原子类
  • Java
    • Java 并发
      • Java 并发 - 如何确保三个线程顺序执行?
  • Java
    • Java 并发
      • Java 并发 - 锁
  • Java
    • Java 的新特性
      • Java 10 新特性概述
  • Java
    • Java 的新特性
      • Java 11 新特性概述
  • Java
    • Java 的新特性
      • Java 12 新特性概述
  • Java
    • Java 的新特性
      • Java 13 新特性概述
  • Java
    • Java 的新特性
      • Java 14 新特性概述
  • Java
    • Java 的新特性
      • Java 15 新特性概述
  • Java
    • Java 的新特性
      • Java 8的新特性
  • Java
    • Java 的新特性
      • Java 9 新特性概述
  • Java
    • Java 调试排错
      • 调试排错 - Java Debug Interface(JDI)详解
  • Java
    • Java 调试排错
      • 调试排错 - CPU 100% 排查优化实践
  • Java
    • Java 调试排错
      • 调试排错 - Java Heap Dump分析
  • Java
    • Java 调试排错
      • 调试排错 - Java Thread Dump分析
  • Java
    • Java 调试排错
      • 调试排错 - Java动态调试技术原理
  • Java
    • Java 调试排错
      • 调试排错 - Java应用在线调试Arthas
  • Java
    • Java 调试排错
      • 调试排错 - Java问题排查:工具单
  • Java
    • Java 调试排错
      • 调试排错 - 内存溢出与内存泄漏
  • Java
    • Java 调试排错
      • 调试排错 - 在线分析GC日志的网站GCeasy
  • Java
    • Java 调试排错
      • 调试排错 - 常见的GC问题分析与解决
  • Java
    • Java 集合
      • Java 集合 - ArrayList
  • Java
    • Java 集合
      • Java 集合 - HashMap 和 ConcurrentHashMap
  • Java
    • Java 集合
      • Java 集合 - HashMap的死循环问题
  • Java
    • Java 集合
      • Java 集合 - LinkedHashSet&Map
  • Java
    • Java 集合
      • Java 集合 - LinkedList
  • Java
    • Java 集合
      • Java 集合 - PriorityQueue
  • Java
    • Java 集合
      • Java 集合 - Stack & Queue
  • Java
    • Java 集合
      • Java 集合 - TreeSet & TreeMap
  • Java
    • Java 集合
      • Java 集合 - WeakHashMap
  • Java
    • Java 集合
      • Java 集合 - 为什么HashMap的容量是2的幂次方
  • Java
    • Java 集合
      • Java 集合 - 概览
  • Java
    • Java 集合
      • Java 集合 - 高性能队列Disruptor详解
  • 分布式
    • RPC
      • ⭐️RPC - Dubbo&hsf&Spring cloud的区别
  • 分布式
    • RPC
      • ⭐️RPC - Dubbo的架构原理
  • 分布式
    • RPC
      • ⭐️RPC - HSF的原理分析
  • 分布式
    • RPC
      • ⭐️RPC - 你应该知道的RPC原理
  • 分布式
    • RPC
      • ⭐️RPC - 动态代理
  • 分布式
    • RPC
      • 深入理解 RPC 之协议篇
  • 分布式
    • RPC
      • RPC - 序列化和反序列化
  • 分布式
    • RPC
      • ⭐️RPC - 服务注册与发现
  • 分布式
    • RPC
      • RPC - 核心原理
  • 分布式
    • RPC
      • ⭐️RPC - 框架对比
  • 分布式
    • RPC
      • ⭐️RPC - 网络通信
  • 分布式
    • 分布式事务
      • 分布式事务 Seata TCC 模式深度解析
  • 分布式
    • 分布式事务
      • 分布式事务的实现原理
  • 分布式
    • 分布式事务
      • 常用的分布式事务解决方案
  • 分布式
    • 分布式事务
      • 手写实现基于消息队列的分布式事务框架
  • 分布式
    • 分布式算法
      • CAP 定理的含义
  • 分布式
    • 分布式算法
      • Paxos和Raft比较
  • 分布式
    • 分布式算法
      • 分布式一致性与共识算法
  • 分布式
    • 分布式锁
      • ⭐️分布式锁的原理及实现方式
  • 分布式
    • 搜索引擎
      • ElasticSearch与SpringBoot的集成与JPA方法的使用
  • 分布式
    • 搜索引擎
      • 全文搜索引擎 Elasticsearch 入门教程
  • 分布式
    • 搜索引擎
      • 十分钟学会使用 Elasticsearch 优雅搭建自己的搜索系统
  • 分布式
    • 搜索引擎
      • 腾讯万亿级 Elasticsearch 技术解密
  • 分布式
    • 日志系统
      • Grafana Loki 简明教程
  • 分布式
    • 日志系统
      • 分布式系统中如何优雅地追踪日志
  • 分布式
    • 日志系统
      • 如何优雅地记录操作日志?
  • 分布式
    • 日志系统
      • 日志收集组件—Flume、Logstash、Filebeat对比
  • 分布式
    • 日志系统
      • 集中式日志系统 ELK 协议栈详解
  • 分布式
    • 消息队列
      • 消息队列 - Kafka
  • 分布式
    • 消息队列
      • 消息队列 - Kafka、RabbitMQ、RocketMQ等消息中间件的对比
  • 分布式
    • 消息队列
      • 消息队列之 RabbitMQ
  • 分布式
    • 消息队列
      • 消息队列 - 使用docker-compose构建kafka集群
  • 分布式
    • 消息队列
      • 消息队列 - 分布式系统与消息的投递
  • 分布式
    • 消息队列
      • 消息队列 - 如何保证消息的可靠性传输
  • 分布式
    • 消息队列
      • 消息队列 - 如何保证消息的顺序性
  • 分布式
    • 消息队列
      • 消息队列 - 如何保证消息队列的高可用
  • 分布式
    • 消息队列
      • 消息队列 - 消息队列设计精要
  • 分布式
    • 监控系统
      • 深度剖析开源分布式监控CAT
  • 大数据
    • Flink
      • Flink架构与核心组件
  • 微服务
    • Dubbo
      • 基于dubbo的分布式应用中的统一异常处理
  • 微服务
    • Dubbo
      • Vim快捷键
  • 微服务
    • Service Mesh
      • Istio 是什么?
  • 微服务
    • Service Mesh
      • OCTO 2.0:美团基于Service Mesh的服务治理系统详解
  • 微服务
    • Service Mesh
      • Service Mesh是什么?
  • 微服务
    • Service Mesh
      • Spring Cloud向Service Mesh迁移
  • 微服务
    • Service Mesh
      • 数据挖掘算法
  • 微服务
    • Service Mesh
      • Seata Saga 模式
  • 微服务
    • Spring Cloud
      • Seata TCC 模式
  • 微服务
    • Spring Cloud
      • Spring Cloud Config
  • 微服务
    • Spring Cloud
      • Seata AT 模式
  • 微服务
    • Spring Cloud
      • Spring Cloud Gateway
  • 微服务
    • Spring Cloud
      • Spring Cloud OpenFeign 的核心原理
  • 微服务
    • Spring Cloud
      • Seata XA 模式
  • 数据库
    • Database Version Control
      • Liquibase vs. Flyway
  • 数据库
    • Database Version Control
      • Six reasons to version control your database
  • 数据库
    • MySQL
      • How Sharding Works
  • 数据库
    • MySQL
      • MySQL InnoDB中各种SQL语句加锁分析
  • 数据库
    • MySQL
      • MySQL 事务隔离级别和锁
  • 数据库
    • MySQL
      • MySQL 索引性能分析概要
  • 数据库
    • MySQL
      • MySQL 索引设计概要
  • 数据库
    • MySQL
      • MySQL出现Waiting for table metadata lock的原因以及解决方法
  • 数据库
    • MySQL
      • MySQL的Limit性能问题
  • 数据库
    • MySQL
      • MySQL索引优化explain
  • 数据库
    • MySQL
      • MySQL索引背后的数据结构及算法原理
  • 数据库
    • MySQL
      • MySQL行转列、列转行问题
  • 数据库
    • MySQL
      • 一条SQL更新语句是如何执行的?
  • 数据库
    • MySQL
      • 一条SQL查询语句是如何执行的?
  • 数据库
    • MySQL
      • 为什么 MySQL 使用 B+ 树
  • 数据库
    • MySQL
      • 为什么 MySQL 的自增主键不单调也不连续
  • 数据库
    • MySQL
      • 为什么我的MySQL会“抖”一下?
  • 数据库
    • MySQL
      • 为什么数据库不应该使用外键
  • 数据库
    • MySQL
      • 为什么数据库会丢失数据
  • 数据库
    • MySQL
      • 事务的可重复读的能力是怎么实现的?
  • 数据库
    • MySQL
      • 大众点评订单系统分库分表实践
  • 数据库
    • MySQL
      • 如何保证缓存与数据库双写时的数据一致性?
  • 数据库
    • MySQL
      • 浅谈数据库并发控制 - 锁和 MVCC
  • 数据库
    • MySQL
      • 深入浅出MySQL 中事务的实现
  • 数据库
    • MySQL
      • 浅入浅出MySQL 和 InnoDB
  • 数据库
    • PostgreSQL
      • PostgreSQL upsert功能(insert on conflict do)的用法
  • 数据库
    • Redis
      • Redis GEO & 实现原理深度分析
  • 数据库
    • Redis
      • Redis 和 I/O 多路复用
  • 数据库
    • Redis
      • Redis分布式锁
  • 数据库
    • Redis
      • Redis实现分布式锁中的“坑”
  • 数据库
    • Redis
      • Redis总结
  • 数据库
    • Redis
      • 史上最全Redis高可用技术解决方案大全
  • 数据库
    • Redis
      • Redlock:Redis分布式锁最牛逼的实现
  • 数据库
    • Redis
      • 为什么 Redis 选择单线程模型
  • 数据库
    • TiDB
      • 新一代数据库TiDB在美团的实践
  • 数据库
    • 数据仓库
      • 实时数仓在有赞的实践
  • 数据库
    • 数据库原理
      • OLTP与OLAP的关系是什么?
  • 数据库
    • 数据库原理
      • 为什么 OLAP 需要列式存储
  • 系统设计
    • DDD
      • Domain Primitive
  • 系统设计
    • DDD
      • Repository模式
  • 系统设计
    • DDD
      • 应用架构
  • 系统设计
    • DDD
      • 聊聊如何避免写流水账代码
  • 系统设计
    • DDD
      • 领域层设计规范
  • 系统设计
    • DDD
      • 从三明治到六边形
  • 系统设计
    • DDD
      • 阿里盒马领域驱动设计实践
  • 系统设计
    • DDD
      • 领域驱动设计(DDD)编码实践
  • 系统设计
    • DDD
      • 领域驱动设计在互联网业务开发中的实践
  • 系统设计
    • 基础架构
      • 容错,高可用和灾备
  • 系统设计
    • 数据聚合
      • GraphQL及元数据驱动架构在后端BFF中的实践
  • 系统设计
    • 数据聚合
      • 高效研发-闲鱼在数据聚合上的探索与实践
  • 系统设计
    • 服务安全
      • JSON Web Token 入门教程
  • 系统设计
    • 服务安全
      • 你还在用JWT做身份认证嘛?
  • 系统设计
    • 服务安全
      • 凭证(Credentials)
  • 系统设计
    • 服务安全
      • 授权(Authorization)
  • 系统设计
    • 服务安全
      • 理解OAuth2.0
  • 系统设计
    • 服务安全
      • 认证(Authentication)
  • 系统设计
    • 架构案例
      • 微信 Android 客户端架构演进之路
  • 系统设计
    • 高可用架构
      • 业务高可用的保障:异地多活架构
  • 计算机基础
    • 字符编码
      • Base64原理解析
  • 计算机基础
    • 字符编码
      • 字符编码笔记:ASCII,Unicode 和 UTF-8
  • 计算机基础
    • 操作系统
      • 为什么 CPU 访问硬盘很慢
  • 计算机基础
    • 操作系统
      • 为什么 HTTPS 需要 7 次握手以及 9 倍时延
  • 计算机基础
    • 操作系统
      • 为什么 Linux 默认页大小是 4KB
  • 计算机基础
    • 操作系统
      • 磁盘IO那些事
  • 计算机基础
    • 操作系统
      • 虚拟机的3种网络模式
  • 计算机基础
    • 服务器
      • mac终端bash、zsh、oh-my-zsh最实用教程
  • 计算机基础
    • 服务器
      • Nginx强制跳转Https
  • 计算机基础
    • 服务器
      • curl 的用法指南
  • 计算机基础
    • 网络安全
      • 如何设计一个安全的对外接口?
  • 计算机基础
    • 网络安全
      • 浅谈常见的七种加密算法及实现
  • 计算机基础
    • 网络编程
      • MQTT - The Standard for IoT Messaging
  • 计算机基础
    • 网络编程
      • 两万字长文 50+ 张趣图带你领悟网络编程的内功心法
  • 计算机基础
    • 网络编程
      • 为什么 TCP 协议有 TIME_WAIT 状态
  • 计算机基础
    • 网络编程
      • 为什么 TCP 协议有性能问题
  • 计算机基础
    • 网络编程
      • 为什么 TCP 协议有粘包问题
  • 计算机基础
    • 网络编程
      • 为什么 TCP 建立连接需要三次握手
  • 计算机基础
    • 网络编程
      • 为什么 TCP/IP 协议会拆分数据
  • 计算机基础
    • 网络编程
      • 使用 OAuth 2 和 JWT 为微服务提供安全保障
  • 计算机基础
    • 网络编程
      • 四种常见的 POST 提交数据方式
  • 计算机基础
    • 网络编程
      • 有赞TCP网络编程最佳实践
  • 计算机基础
    • 网络编程
      • 看完这篇HTTP,跟面试官扯皮就没问题了
  • 计算机基础
    • 网络编程
      • 详细解析 HTTP 与 HTTPS 的区别
  • 质量&效率
    • 快捷键
      • Idea快捷键(Mac版)
  • 质量&效率
    • 快捷键
      • Shell快捷键
  • 质量&效率
    • 快捷键
      • conduit
  • 质量&效率
    • 敏捷开发
      • Scrum的3种角色
  • 质量&效率
    • 敏捷开发
      • Scrum的4种会议
  • 质量&效率
    • 敏捷开发
      • ThoughtWorks的敏捷开发
  • 质量&效率
    • 敏捷开发
      • 敏捷开发入门教程
  • 运维&测试
    • Docker
      • Docker (容器) 的原理
  • 运维&测试
    • Docker
      • Docker Compose:链接外部容器的几种方式
  • 运维&测试
    • Docker
      • Docker 入门教程
  • 运维&测试
    • Docker
      • Docker 核心技术与实现原理
  • 运维&测试
    • Docker
      • Dockerfile 最佳实践
  • 运维&测试
    • Docker
      • Docker开启Remote API 访问 2375端口
  • 运维&测试
    • Docker
      • Watchtower - 自动更新 Docker 镜像与容器
  • 运维&测试
    • Kubernetes
      • Kubernetes 介绍
  • 运维&测试
    • Kubernetes
      • Kubernetes 在有赞的实践
  • 运维&测试
    • Kubernetes
      • Kubernetes 学习路径
  • 运维&测试
    • Kubernetes
      • Kubernetes如何改变美团的云基础设施?
  • 运维&测试
    • Kubernetes
      • Kubernetes的三种外部访问方式:NodePort、LoadBalancer 和 Ingress
  • 运维&测试
    • Kubernetes
      • 谈 Kubernetes 的架构设计与实现原理
  • 运维&测试
    • 压测
      • 全链路压测平台(Quake)在美团中的实践
  • 运维&测试
    • 测试
      • Cpress - JavaScript End to End Testing Framework
  • 运维&测试
    • 测试
      • 代码覆盖率-JaCoCo
  • 运维&测试
    • 测试
      • 浅谈代码覆盖率
  • 运维&测试
    • 测试
      • 测试中 Fakes、Mocks 以及 Stubs 概念明晰
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP中的Bean是如何被AOP代理的
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP原生动态代理和Cglib动态代理
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP实现方式(xml&注解)
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP是如何收集切面类并封装的
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP概述
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP的底层核心后置处理器
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP的延伸知识
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot - IOC(一)
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot - IOC(三)
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot - IOC(二)
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot - IOC(五)
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot - IOC(四) - 循环依赖与解决方案
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot - 启动引导
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot JarLauncher
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot Web Mvc 自动装配
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot 使用ApplicationListener监听器
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot 声明式事务
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot 嵌入式容器
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot引起的“堆外内存泄漏”排查及经验总结
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot的启动流程
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot自动化配置源码分析
  • Java FrameWorks
    • Spring
      • Spring Boot
        • 如何自定义Spring Boot Starter?
  • Java FrameWorks
    • Spring
      • Spring IOC
        • IOC - 模块装配和条件装配
  • Java FrameWorks
    • Spring
      • Spring IOC
        • IOC - 配置源(xml,注解)
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Environment
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring ApplicationContext
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring BeanDefinition
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring BeanFactory
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring BeanFactoryPostProcessor
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring BeanPostProcessor
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Bean的生命周期(一) - 概述
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Bean的生命周期(三) - 实例化阶段
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Bean的生命周期(二) - BeanDefinition
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Bean的生命周期(五) - 销毁阶段
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Bean的生命周期(四) - 初始化阶段
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring ComponentScan
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Events
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring IOC 基础篇
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring IOC 总结
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring IOC 进阶篇
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring IOC容器的生命周期
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Resource
  • Java FrameWorks
    • Spring
      • Spring MVC
        • DispatcherServlet的初始化原理
  • Java FrameWorks
    • Spring
      • Spring MVC
        • DispatcherServlet的核心工作原理
  • Java FrameWorks
    • Spring
      • Spring MVC
        • WebMvc的架构设计与组件功能解析
  • Java FrameWorks
    • Spring
      • Spring Security
        • Spring Boot 2 + Spring Security 5 + JWT 的单页应用 Restful 解决方案
  • Java FrameWorks
    • Spring
      • Spring Security
        • Spring Security Oauth
  • Java FrameWorks
    • Spring
      • Spring Security
        • Spring Security
  • Java FrameWorks
    • Spring
      • Spring WebFlux
        • DispatcherHandler的工作原理(传统方式)
  • Java FrameWorks
    • Spring
      • Spring WebFlux
        • DispatcherHandler的工作原理(函数式端点)
  • Java FrameWorks
    • Spring
      • Spring WebFlux
        • WebFlux的自动装配
  • Java FrameWorks
    • Spring
      • Spring WebFlux
        • 快速了解响应式编程与Reactive
  • Java FrameWorks
    • Spring
      • Spring WebFlux
        • 快速使用WebFlux
  • 分布式
    • 协调服务
      • Zookeeper
        • Zookeeper - 客户端之 Curator
  • 分布式
    • 协调服务
      • Zookeeper
        • 详解分布式协调服务 ZooKeeper
  • 分布式
    • 协调服务
      • etcd
        • 高可用分布式存储 etcd 的实现原理
  • 数据库
    • Database Version Control
      • Flyway
        • Database Migrations with Flyway
  • 数据库
    • Database Version Control
      • Flyway
        • How Flyway works
  • 数据库
    • Database Version Control
      • Flyway
        • Rolling Back Migrations with Flyway
  • 数据库
    • Database Version Control
      • Flyway
        • The meaning of the concept of checksums
  • 数据库
    • Database Version Control
      • Liquibase
        • Introduction to Liquibase Rollback
  • 数据库
    • Database Version Control
      • Liquibase
        • LiquiBase中文学习指南
  • 数据库
    • Database Version Control
      • Liquibase
        • Use Liquibase to Safely Evolve Your Database Schema
  • 系统设计
    • 流量控制
      • RateLimiter
        • Guava Rate Limiter实现分析
  • 系统设计
    • 流量控制
      • Sentinel
        • Sentinel 与 Hystrix 的对比
  • 系统设计
    • 流量控制
      • Sentinel
        • Sentinel工作主流程
  • 系统设计
    • 流量控制
      • 算法
        • 分布式服务限流实战
  • 系统设计
    • 解决方案
      • 秒杀系统
        • 如何设计一个秒杀系统
  • 系统设计
    • 解决方案
      • 红包系统
        • 微信高并发资金交易系统设计方案--百亿红包背后的技术支撑
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • 什么是预排序遍历树算法(MPTT,Modified Preorder Tree Traversal)
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • 加密算法
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • 推荐系统算法
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • linkerd
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • 查找算法
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • 缓存淘汰算法中的LRU和LFU
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • 负载均衡算法
  • 计算机基础
    • 数据结构与算法
      • 分布式算法
        • 分布式算法 - Paxos算法
  • 计算机基础
    • 数据结构与算法
      • 分布式算法
        • 分布式算法 - Raft算法
  • 计算机基础
    • 数据结构与算法
      • 分布式算法
        • 分布式算法 - Snowflake算法
  • 计算机基础
    • 数据结构与算法
      • 分布式算法
        • 分布式算法 - ZAB算法
  • 计算机基础
    • 数据结构与算法
      • 分布式算法
        • 分布式算法 - 一致性Hash算法
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - Bitmap & Bloom Filter
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - Map & Reduce
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - Trie树/数据库/倒排索引
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - 分治/hash/排序
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - 双层桶划分
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - 外(磁盘文件)排序
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - 布隆过滤器
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理算法
  • 计算机基础
    • 数据结构与算法
      • 字符串匹配算法
        • 字符串匹配 - 文本预处理:后缀树(Suffix Tree)
  • 计算机基础
    • 数据结构与算法
      • 字符串匹配算法
        • 字符串匹配 - 模式预处理:BM 算法 (Boyer-Moore)
  • 计算机基础
    • 数据结构与算法
      • 字符串匹配算法
        • 字符串匹配 - 模式预处理:KMP 算法(Knuth-Morris-Pratt)
  • 计算机基础
    • 数据结构与算法
      • 字符串匹配算法
        • 字符串匹配 - 模式预处理:朴素算法(Naive)(暴力破解)
  • 计算机基础
    • 数据结构与算法
      • 字符串匹配算法
        • 字符串匹配
  • 计算机基础
    • 数据结构与算法
      • 常用算法
        • 分支限界算法
  • 计算机基础
    • 数据结构与算法
      • 常用算法
        • 分治算法
  • 计算机基础
    • 数据结构与算法
      • 常用算法
        • 动态规划算法
  • 计算机基础
    • 数据结构与算法
      • 常用算法
        • 回溯算法
  • 计算机基础
    • 数据结构与算法
      • 常用算法
        • 贪心算法
  • 计算机基础
    • 数据结构与算法
      • 排序算法
        • 十大排序算法
  • 计算机基础
    • 数据结构与算法
      • 排序算法
        • 图解排序算法(一)之3种简单排序(选择,冒泡,直接插入)
  • 计算机基础
    • 数据结构与算法
      • 排序算法
        • 图解排序算法(三)之堆排序
  • 计算机基础
    • 数据结构与算法
      • 排序算法
        • 图解排序算法(二)之希尔排序
  • 计算机基础
    • 数据结构与算法
      • 排序算法
        • 图解排序算法(四)之归并排序
  • 计算机基础
    • 数据结构与算法
      • 数据结构
        • 树的高度和深度
  • 计算机基础
    • 数据结构与算法
      • 数据结构
        • 红黑树深入剖析及Java实现
  • 计算机基础
    • 数据结构与算法
      • 数据结构
        • 线性结构 - Hash
  • 计算机基础
    • 数据结构与算法
      • 数据结构
        • 线性结构 - 数组、链表、栈、队列
  • 计算机基础
    • 数据结构与算法
      • 数据结构
        • 逻辑结构 - 树
  • 运维&测试
    • 测试
      • Spock
        • Groovy 简明教程
  • 运维&测试
    • 测试
      • Spock
        • Spock 官方文档
  • 运维&测试
    • 测试
      • Spock
        • Spock单元测试框架介绍以及在美团优选的实践
  • 运维&测试
    • 测试
      • TDD
        • TDD 实践 - FizzFuzzWhizz(一)
  • 运维&测试
    • 测试
      • TDD
        • TDD 实践 - FizzFuzzWhizz(三)
  • 运维&测试
    • 测试
      • TDD
        • TDD 实践 - FizzFuzzWhizz(二)
  • 运维&测试
    • 测试
      • TDD
        • 测试驱动开发(TDD)- 原理篇
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Nacos
          • Nacos 服务注册的原理
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Nacos
          • Nacos 配置中心原理分析
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Seata
          • 服务调用过程
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Seata
          • Spring Cloud Bus
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Seata
          • Spring Cloud Consul
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Seata
          • Spring Cloud Stream
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Sentinel
          • Sentinel 与 Hystrix 的对比
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Sentinel
          • Sentinel
  • 微服务
    • Spring Cloud
      • Spring Cloud Netflix
        • Hystrix
          • How Hystrix Works
  • 微服务
    • Spring Cloud
      • Spring Cloud Netflix
        • Hystrix
          • Hystrix
  • 微服务
    • Spring Cloud
      • Spring Cloud Netflix
        • Hystrix
          • Hystrix原理与实战
  • 微服务
    • Spring Cloud
      • Spring Cloud Netflix
        • Hystrix
          • Spring Cloud Hystrix基本原理
由 GitBook 提供支持
在本页
  • 1. 基于web.xml的DispatcherServlet初始化
  • 1.1 init
  • 1.2 initWebApplicationContext
  • 1.3 ContextRefreshListener
  • 1.4 小结
  • 2. 基于Servlet3.0规范的DispatcherServlet初始化
  • 2.1 AbstractContextLoaderInitializer
  • 2.2 AbstractDispatcherServletInitializer
  • 小结

这有帮助吗?

  1. Java FrameWorks
  2. Spring
  3. Spring MVC

DispatcherServlet的初始化原理

首先咱先研究一下 DispatcherServlet 的初始化阶段,都干了哪些工作,下一章我们再研究程序运行期间,DispatcherServlet 如何处理请求并响应的。

1. 基于web.xml的DispatcherServlet初始化

前面我们在刚刚开始学习 WebMvc 的时候,我们只配置了两样东西:一个 web.xml ,一个 spring-mvc.xml 。web.xml 中注册了 DispatcherServlet ,spring-mvc.xml 负责初始化 DispatcherServlet 。那问题就来了,DispatcherServlet 在初始化的时候都干了什么,这是我们要研究的东西了。

1.1 init

我们都知道,一切 Servlet 的生命周期,都是从 init 方法开始,DispatcherServlet 也不例外。借助 IDE 往上翻,可以发现 DispatcherServlet 的 init 方法在父类 HttpServletBean 中重写了:

@Override
public final void init() throws ServletException {
    // Set bean properties from init parameters.
    // ......
    // Let subclasses do whatever initialization they like.
    initServletBean();
}

上面的初始化逻辑我们不关心了,关键的点在于下面的这个模板方法 initServletBean ,这个才是关键!

initServletBean 方法要来到 DispatcherServlet 的直接父类 FrameworkServlet 中,这里有初始化的逻辑:

@Override
protected final void initServletBean() throws ServletException {
    // log ......
    long startTime = System.currentTimeMillis();

    try {
        this.webApplicationContext = initWebApplicationContext();
        initFrameworkServlet();
    } // catch ......

    // logger ......
}

刨去超多的日志打印不看,它的核心就两句话:一个初始化 IOC 容器,一个初始化 Servlet 本身。由于 initFrameworkServlet 方法中没有任何逻辑,DispatcherServlet 也没有重写它,所以核心还是初始化 IOC 容器。下面咱进入 initWebApplicationContext 方法。

1.2 initWebApplicationContext

初始化 DispatcherServlet 之前,先把属于它的 IOC 容器先初始化出来,以此来形成父子容器,这部分的源码比较长,小册只截取最关键的部分:

protected WebApplicationContext initWebApplicationContext() {
    // 先获取根容器(通过ContextLoaderListener初始化的IOC容器)
    WebApplicationContext rootContext =
            WebApplicationContextUtils.getWebApplicationContext(getServletContext());
    WebApplicationContext wac = null;

    // 该分支用于处理DispatcherServlet构造时set过ApplicationContext的情况,一般不会遇到
    if (this.webApplicationContext != null) {
        // A context instance was injected at construction time -> use it
        wac = this.webApplicationContext;
        if (wac instanceof ConfigurableWebApplicationContext) {
            ConfigurableWebApplicationContext cwac = (ConfigurableWebApplicationContext) wac;
            if (!cwac.isActive()) {
                if (cwac.getParent() == null) {
                    cwac.setParent(rootContext);
                }
                configureAndRefreshWebApplicationContext(cwac);
            }
        }
    }
    // ......
    // 如果没有WebApplicationContext,则会创建一个全新的WebApplicationContext
    if (wac == null) {
        wac = createWebApplicationContext(rootContext);
    }
    // ......
    // 将该WebApplicationContext放入ServletContext中
    if (this.publishContext) {
        // Publish the context as a servlet context attribute.
        String attrName = getServletContextAttributeName();
        getServletContext().setAttribute(attrName, wac);
    }
    return wac;
}

纵观整段源码,在第一次初始化的时候很明显上面的乱七八糟分支都是不走的,它会走中间偏下部分的 createWebApplicationContext 方法,在此初始化 IOC 容器。我们继续跟进源码:

1.2.1 createWebApplicationContext

进来 createWebApplicationContext 方法,发现它继续往下调用重载的方法:

protected WebApplicationContext createWebApplicationContext(@Nullable WebApplicationContext parent) {
    return createWebApplicationContext((ApplicationContext) parent);
}

继续往下,发现这里面有正儿八经的逻辑了,咱先把这段源码大体浏览一下,这里面有一些关键的环节,我们需要着重去看。

protected WebApplicationContext createWebApplicationContext(@Nullable ApplicationContext parent) {
    // 加载IOC容器的承载实现类
    Class<?> contextClass = getContextClass();
    if (!ConfigurableWebApplicationContext.class.isAssignableFrom(contextClass)) {
        throw ex ......;
    }
    // 反射实例化
    ConfigurableWebApplicationContext wac =
            (ConfigurableWebApplicationContext) BeanUtils.instantiateClass(contextClass);

    wac.setEnvironment(getEnvironment());
    wac.setParent(parent);
    // 获取、设置配置文件的路径
    String configLocation = getContextConfigLocation();
    if (configLocation != null) {
        wac.setConfigLocation(configLocation);
    }
    // 刷新IOC容器 - refresh
    configureAndRefreshWebApplicationContext(wac);

    return wac;
}

有了注释,看起来这段代码是不是非常简单了,核心就三步:实例化 IOC 容器、设置配置文件路径配置、刷新 IOC 容器。

不过这里面有很多细节,我们逐一来看。

1.2.2 IOC容器的真正落地实现

首先上面的第一行,getContextClass 方法,它会获取到 WebApplicationContext 的真正落地实现,跳转进该方法,会发现它引用的是一个叫 XmlWebApplicationContext 的家伙:

public static final Class<?> DEFAULT_CONTEXT_CLASS = XmlWebApplicationContext.class;
private Class<?> contextClass = DEFAULT_CONTEXT_CLASS;

public Class<?> getContextClass() {
    return this.contextClass;
}

是不是感觉有点似曾相识?之前,我们在 IOC 进阶,介绍 BeanFactory 的实现类中,提到过一个 XmlBeanFactory ,咱当时在那里说,XmlBeanFactory 这个东西不要去看了,因为已经没有在用了。但这个 XmlWebApplicationContext 不一样,它跟 ClassPathXmlApplicationContext 是差不多的,只是一个在 Web 环境下使用,一个主要在普通项目环境中使用。

接下来的配置文件路径的获取,就是利用 XmlWebApplicationContext 的东西,咱继续往下来看。

1.2.3 获取配置文件的路径

String configLocation = getContextConfigLocation(); 这一句代码中,获取的就是我们之前在 web.xml 中配置的那个 **contextConfigLocation** 属性,配置了它,这里就能拿到配置文件的路径;如果不配置的话,它也有一套默认规则,这个默认规则我们可以在 XmlWebApplicationContext 中看到一个重写的 getDefaultConfigLocations 方法:

public static final String DEFAULT_CONFIG_LOCATION = "/WEB-INF/applicationContext.xml";
public static final String DEFAULT_CONFIG_LOCATION_PREFIX = "/WEB-INF/";
public static final String DEFAULT_CONFIG_LOCATION_SUFFIX = ".xml";

protected String[] getDefaultConfigLocations() {
    if (getNamespace() != null) {
        return new String[] {DEFAULT_CONFIG_LOCATION_PREFIX + getNamespace() + DEFAULT_CONFIG_LOCATION_SUFFIX};
    } else {
        return new String[] {DEFAULT_CONFIG_LOCATION};
    }
}

可见这个默认的规则,就是我们在 68 章,SpringWebMvc 的入门中提到的 /WEB-INF/{servlet-name}-servlet.xml ,这里提到的 getNamespace() 获取到的,是刚才在 FrameworkServlet 中定义的一个方法:

public static final String DEFAULT_NAMESPACE_SUFFIX = "-servlet";

public String getNamespace() {
    return (this.namespace != null ? this.namespace : getServletName() + DEFAULT_NAMESPACE_SUFFIX);
}

所以,看到了这个套路了吧,把 Servlet 的 name 拿过来,后缀拼上 -servlet ,这样就形成配置文件的路径了。

至于这个配置文件在哪里用,咱下面会遇到的,莫慌莫着急。

1.2.4 刷新WebAppliCationContext

当上面的 WebAppliCationContext 都配置好之后,下面的最关键步骤,就是刷新 IOC 容器了。来到 configureAndRefreshWebApplicationContext 方法,这里面又是比较长,不过不太值得分段看了,咱总体扫一眼吧,看看里面的关键步骤:

protected void configureAndRefreshWebApplicationContext(ConfigurableWebApplicationContext wac) {
    // 设置IOC容器的id,太长略过

    // 常规设置一些web的东西
    wac.setServletContext(getServletContext());
    wac.setServletConfig(getServletConfig());
    // 此处就是上面的getNamespace方法
    wac.setNamespace(getNamespace());
    // 这里添加了一个上下文刷新的监听器
    wac.addApplicationListener(new SourceFilteringListener(wac, new ContextRefreshListener()));

    ConfigurableEnvironment env = wac.getEnvironment();
    if (env instanceof ConfigurableWebEnvironment) {
        ((ConfigurableWebEnvironment) env).initPropertySources(getServletContext(), getServletConfig());
    }

    postProcessWebApplicationContext(wac);
    applyInitializers(wac);
    // 刷新IOC容器
    wac.refresh();
}

看这里面的逻辑,总体还都是挺容易理解的吧!很明显,对于一个 WebAppliCationContext 而言,它应该持有 Servlet 相关的东西,所以上面的部分很理所当然。

中间它添加了一个 ContextRefreshListener ,注意它来自 spring-webmvc 包,它就是监听我们之前在事件的章节中学习的 ContextRefreshedEvent 事件!至于这个监听器都干了什么,接下来咱马上就会说到。

最底下,它执行 IOC 容器的 refresh 方法,那它就会去加载、解析配置文件,以及初始化的逻辑等等等等。

注意一点!此时 **WebAppliCationContext** 中是没有 **DispatcherServlet** 的!所以 IOC 容器的初始化,是无法控制和操作 DispatcherServlet 的,加上咱上面说到了,initFrameworkServlet 方法里面没有任何初始化逻辑,所以如果 DispatcherServlet 还需要执行额外的初始化逻辑,那就不得不使用其他的方案来触发。

那咋触发呢?刚才不是刚刚说到一个监听器嘛,这个 ContextRefreshListener ,就是让 IOC 容器重新跟 DispatcherServlet 打交道的 “桥梁” 。

1.3 ContextRefreshListener

在进入监听器的源码之前,先想一个问题。

1.3.0 前置思考:此时 IOC 容器初始化到哪一步了?

此时正在执行的,是 ContextRefreshedEvent 事件的发布动作吧!此时第 11 步 **finishBeanFactoryInitialization** 方法已经执行完毕了吧,IOC 容器中的 bean 也都初始化完成了吧!( **ContextRefreshedEvent** 事件的发布,是在第 12 步 **finishRefresh** 方法中广播的)

所以,当 ContextRefreshedEvent 事件广播的时候,我们就应该知道,此时所有的 bean 都准备就绪。但是!因为我们在之前的初体验中,根本什么东西都没有注册,甚至连一个 <mvc:annotation-driven /> 标签,或者 @EnableWebMvc 注解都没有写,所以此时 IOC 容器中应该只有一个 **InternalResourceViewResolver** ,其余的什么 **HandlerMapping** 、**HandlerAdapter** 统统都没有!

那问题就来了,这些东西都没有注册,咋就好使了呢?

好,带着这个问题,我们可以来看 ContextRefreshListener 的源码了。

1.3.1 ContextRefreshListener的源码

private class ContextRefreshListener implements ApplicationListener<ContextRefreshedEvent> {

    @Override
    public void onApplicationEvent(ContextRefreshedEvent event) {
        FrameworkServlet.this.onApplicationEvent(event);
    }
}

这个 ContextRefreshListener 定义在 FrameworkServlet 的内部,而正是因为定义在内部,所以刚好能拿到 DispatcherServlet 的实例。这个监听器的触发调用的逻辑,就是 FrameworkServlet 的 onApplicationEvent 方法:

public void onApplicationEvent(ContextRefreshedEvent event) {
    this.refreshEventReceived = true;
    synchronized (this.onRefreshMonitor) {
        onRefresh(event.getApplicationContext());
    }
}

protected void onRefresh(ApplicationContext context) {
    // For subclasses: do nothing by default.
}

很明显,接下来又是模板方法,跳转到 DispatcherServlet 了。

1.3.2 DispatcherServlet的onRefresh

注意这个地方到了非常非常重要的点了!!!高能预警!!!

@Override
protected void onRefresh(ApplicationContext context) {
    initStrategies(context);
}

protected void initStrategies(ApplicationContext context) {
    initMultipartResolver(context); // 文件上传
    initLocaleResolver(context); // 国际化
    initThemeResolver(context); // 前端主题
    initHandlerMappings(context); // 处理器映射器
    initHandlerAdapters(context); // 处理器适配器
    initHandlerExceptionResolvers(context); // 异常处理器
    initRequestToViewNameTranslator(context);
    initViewResolvers(context); // 视图解析器
    initFlashMapManager(context);
}

可以发现,这个刷新逻辑中,把 **DispatcherServlet** 需要的所有组件,全部都初始化了一遍!所以各位,能猜到里面干了什么了吧!肯定是我们没有初始化哪些组件,这个 **initStrategies** 方法就会帮我们初始化!

下面我们来挑一个比较重要的组件来看看吧,小册就挑 HandlerMapping 吧。

1.3.3 initHandlerMappings

首先我们来看 HandlerMapping 的初始化:

private void initHandlerMappings(ApplicationContext context) {
    this.handlerMappings = null;

    // 默认分支:需要从容器中取出所有HandlerMapping
    if (this.detectAllHandlerMappings) {
        Map<String, HandlerMapping> matchingBeans =
                BeanFactoryUtils.beansOfTypeIncludingAncestors(context, HandlerMapping.class, true, false);
        if (!matchingBeans.isEmpty()) {
            this.handlerMappings = new ArrayList<>(matchingBeans.values());
            AnnotationAwareOrderComparator.sort(this.handlerMappings);
        }
    }
    else {
        // 该分支,仅会取出名为 “handlerMapping” 的bean
        try {
            HandlerMapping hm = context.getBean(HANDLER_MAPPING_BEAN_NAME, HandlerMapping.class);
            this.handlerMappings = Collections.singletonList(hm);
        } // catch ......
    }

    if (this.handlerMappings == null) {
        this.handlerMappings = getDefaultStrategies(context, HandlerMapping.class);
        // logger ......
    }
}

首先上面的逻辑中,它会先从 IOC 容器中,寻找那些类型为 HandlerMapping 的 bean ,借助 BeanFactoryUtils.beansOfTypeIncludingAncestors 方法,可以从子容器一路爬到最顶层父容器,来搜寻所有指定类型的 bean 。如果全部搜寻完毕后,发现没有任何 HandlerMapping ,则会调用最底下的 getDefaultStrategies 方法,使用默认的策略初始化 HandlerMapping 。

1.3.4 【默认策略】getDefaultStrategies

这个默认策略相当重要,一起来看源码是如何设计的:

private static final Properties defaultStrategies;

protected <T> List<T> getDefaultStrategies(ApplicationContext context, Class<T> strategyInterface) {
    String key = strategyInterface.getName();
    String value = defaultStrategies.getProperty(key);
    if (value != null) {
        String[] classNames = StringUtils.commaDelimitedListToStringArray(value);
        List<T> strategies = new ArrayList<>(classNames.length);
        for (String className : classNames) {
            try {
                Class<?> clazz = ClassUtils.forName(className, DispatcherServlet.class.getClassLoader());
                Object strategy = createDefaultStrategy(context, clazz);
                strategies.add((T) strategy);
            } // catch ......
        }
        return strategies;
    } else {
        return new LinkedList<>();
    }
}

可以发现!中间 for 循环中初始化了一组 Class<?> ,而对应的 classNames 是由 value 分割而来,而 value 又是根据上面的一个 **Properties** 类型的 **defaultStrategies** 变量而来!而这个 defaultStrategies 的初始化,是走的静态代码块:

private static final String DEFAULT_STRATEGIES_PATH = "DispatcherServlet.properties";

static {
    try {
        ClassPathResource resource = new ClassPathResource(DEFAULT_STRATEGIES_PATH, DispatcherServlet.class);
        defaultStrategies = PropertiesLoaderUtils.loadProperties(resource);
    } // catch ......
}

注意看!它加载了 classpath 下的一个名为 “DispatcherServlet.properties” 的文件!而这个文件,来自于 spring-webmvc 的 jar 包:

打开这个 properties 文件,发现里面定义了刚才在 initStrategies 方法中初始化的所有 WebMvc 的核心组件的落地实现!

# Default implementation classes for DispatcherServlet's strategy interfaces.
# Used as fallback when no matching beans are found in the DispatcherServlet context.
# Not meant to be customized by application developers.

org.springframework.web.servlet.LocaleResolver=org.springframework.web.servlet.i18n.AcceptHeaderLocaleResolver

org.springframework.web.servlet.ThemeResolver=org.springframework.web.servlet.theme.FixedThemeResolver

org.springframework.web.servlet.HandlerMapping=org.springframework.web.servlet.handler.BeanNameUrlHandlerMapping,\
	org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerMapping,\
	org.springframework.web.servlet.function.support.RouterFunctionMapping

org.springframework.web.servlet.HandlerAdapter=org.springframework.web.servlet.mvc.HttpRequestHandlerAdapter,\
	org.springframework.web.servlet.mvc.SimpleControllerHandlerAdapter,\
	org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerAdapter,\
	org.springframework.web.servlet.function.support.HandlerFunctionAdapter


org.springframework.web.servlet.HandlerExceptionResolver=org.springframework.web.servlet.mvc.method.annotation.ExceptionHandlerExceptionResolver,\
	org.springframework.web.servlet.mvc.annotation.ResponseStatusExceptionResolver,\
	org.springframework.web.servlet.mvc.support.DefaultHandlerExceptionResolver

org.springframework.web.servlet.RequestToViewNameTranslator=org.springframework.web.servlet.view.DefaultRequestToViewNameTranslator

org.springframework.web.servlet.ViewResolver=org.springframework.web.servlet.view.InternalResourceViewResolver

org.springframework.web.servlet.FlashMapManager=org.springframework.web.servlet.support.SessionFlashMapManager

可见,即便我们什么也不注册,也能使用默认的策略,加载这些 SpringWebMvc 认为必需的组件。

由 properties 文件可知,默认的 HandlerMapping 会初始化以下三个实现:

  • org.springframework.web.servlet.handler.BeanNameUrlHandlerMapping

  • **org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerMapping**

  • org.springframework.web.servlet.function.support.RouterFunctionMapping

刚好有我们之前说的最重要的 RequestMappingHandlerMapping ,所以我们不需要任何配置,就可以实现 @Controller + @RequestMapping 的注解式 WebMvc 开发。

所以,读取完配置文件后,在上面的 getDefaultStrategies 方法中,就可以拿到上面的 3 个实现类,并实例化并注册进 IOC 容器,这样就完成了默认策略的加载。

1.4 小结

使用 **web.xml** 配置 **DispatcherServlet** 的时候,即便我们不配置任何内置组件,SpringWebMvc 可以通过预先定义好的内置组件,在 IOC 容器已经初始化接近完毕的时候,借助事件监听,回调 **DispatcherServlet** 使其初始化默认组件的落地实现,从而达到兜底配置。

2. 基于Servlet3.0规范的DispatcherServlet初始化

基于 Servlet 3.0 规范的 SpringWebMvc 工程,咱之前说过,它的入口是通过 WebApplicationInitializer 来的。我们在初体验中编写了一个 AbstractAnnotationConfigDispatcherServletInitializer 的子类,来声明根容器和 DispatcherServlet 子容器的配置类,并且指定了 DispatcherServlet 的 servlet-mapping ,就完成了 WebMvc 的配置。

这其中,我们也是只配置了一个 InternalResourceViewResolver ,其余的肯定都跟上面一样,执行了 DispatcherServlet 的 initStrategies 方法做了兜底初始化。不过我们应该好奇的是,AbstractAnnotationConfigDispatcherServletInitializer 是怎么由 WebApplicationInitializer 来一步一步把根容器和 WebMvc 子容器都初始化好的呢?

2.1 AbstractContextLoaderInitializer

要说到这个,那就必须来看 WebAppliCationInitializer 的第一个抽象实现类了,它首先实现了 WebAppliCationInitializer 接口的 onStartUp 方法:

@Override
public void onStartup(ServletContext servletContext) throws ServletException {
    registerContextLoaderListener(servletContext);
}

只不过这看上去,是为了注册之前在 web.xml 中初始化的那个 ContextLoaderListener 监听器,那里面的逻辑一定是初始化根容器咯,但是这似乎跟 DispatcherServlet 没啥关系。。。

不过要注意,IDEA 在此处给了我们提示,这个 onStartUp 方法,还有重写过的子类:

好,那咱就点击这个向下的 override 图标,跳转到一个叫 AbstractDispatcherServletInitializer 的子类。

2.2 AbstractDispatcherServletInitializer

这个 AbstractDispatcherServletInitializer 重写的 onStartUp 中,除了调用上面 AbstractContextLoaderInitializer 父类的 onStartUp 初始化根容器之外,还注册了 DispatcherServlet :

@Override
public void onStartup(ServletContext servletContext) throws ServletException {
    super.onStartup(servletContext);
    registerDispatcherServlet(servletContext);
}

进入到 registerDispatcherServlet 方法:

protected void registerDispatcherServlet(ServletContext servletContext) {
    String servletName = getServletName();
    Assert.hasLength(servletName, "getServletName() must not return null or empty");

    // 创建WebMvc子容器
    WebApplicationContext servletAppContext = createServletApplicationContext();
    Assert.notNull(servletAppContext, "createServletApplicationContext() must not return null");

    // 初始化DispatcherServlet
    FrameworkServlet dispatcherServlet = createDispatcherServlet(servletAppContext);
    Assert.notNull(dispatcherServlet, "createDispatcherServlet(WebApplicationContext) must not return null");
    dispatcherServlet.setContextInitializers(getServletApplicationContextInitializers());

    // 利用Servlet3.0的规范,动态注册Servlet
    ServletRegistration.Dynamic registration = servletContext.addServlet(servletName, dispatcherServlet);
    // check ......

    registration.setLoadOnStartup(1);
    // 设置servlet-mapping
    registration.addMapping(getServletMappings());
    // servlet是否支持异步请求,默认true
    registration.setAsyncSupported(isAsyncSupported());

    Filter[] filters = getServletFilters();
    if (!ObjectUtils.isEmpty(filters)) {
        for (Filter filter : filters) {
            registerServletFilter(servletContext, filter);
        }
    }

    customizeRegistration(registration);
}

可以发现,这整个流程还是很容易理解的吧!首先初始化 WebMvc 的子容器,然后把 DispatcherServlet 创建出来,最后注册进 ServletContext ,完事。而初始化 WebMvc 子容器的逻辑,就定义在我们刚才说的 AbstractAnnotationConfigDispatcherServletInitializer 中了:

@Override
protected WebApplicationContext createServletApplicationContext() {
    AnnotationConfigWebApplicationContext context = new AnnotationConfigWebApplicationContext();
    Class<?>[] configClasses = getServletConfigClasses();
    if (!ObjectUtils.isEmpty(configClasses)) {
        context.register(configClasses);
    }
    return context;
}

这里面我们要重写的方法,就是这个获取配置类的 getServletConfigClasses 方法。拿到配置类,就可以初始化 WebMvc 的子容器了,后面的逻辑也就跟上面分析的一样了。

小结

好,最后我们总结一下。

使用 **web.xml** 配置 **DispatcherServlet** 的时候,即便我们不配置任何内置组件,SpringWebMvc 可以通过预先定义好的内置组件,在 IOC 容器已经初始化接近完毕的时候,借助事件监听,回调 **DispatcherServlet** 使其初始化默认组件的落地实现,从而达到兜底配置。

基于 Servlet 3.0 规范的方式,通过编写继承 **AbstractAnnotationConfigDispatcherServletInitializer** 的子类,分别提供根容器与 WebMvc 子容器的配置类,底层会帮我们初始化对应的容器,并且借助 **ServletContext** 注册 **DispatcherServlet** 。后续的处理逻辑与基于 **web.xml** 的配置方式一致。

上一页Spring MVC下一页Java FrameWorks

最后更新于2年前

这有帮助吗?

img
img