Java学习指南
  • Java 编程的逻辑
  • Java进阶
  • Java FrameWorks
  • 了解 USB Type-A,B,C 三大标准接口
  • 深入浅出DDD
  • 重构:改善既有代码的设计
  • 面试大纲
  • 云原生
    • 什么是无服务器(what is serverless)?
  • 博客
    • 深入分析Log4j 漏洞
  • 博客
    • Serverless之快速搭建Spring Boot应用
  • 博客
    • 使用 Prometheus + Grafana + Spring Boot Actuator 监控应用
  • 博客
    • 使用 Prometheus + Grafana 监控 MySQL
  • 博客
    • 使用Github Actions + Docker 部署Spring Boot应用
  • 博客
    • Redis分布式锁之Redisson的原理和实践
  • 博客
    • 数据库中的树结构应该怎样去设计
  • 学习&成长
    • 如何成为技术大牛
  • 开发工具
    • Git Commit Message Guidelines
  • 开发工具
    • git命名大全
  • 开发工具
    • Gradle vs Maven Comparison
  • 开发工具
    • Swagger2常用注解及其说明
  • 开发工具
    • 简明 VIM 练级攻略
  • 微服务
    • 十大微服务设计模式和原则
  • 微服务
    • 微服务下的身份认证和令牌管理
  • 微服务
    • 微服务坏味道之循环依赖
  • 设计模式
    • 设计模式 - JDK中的设计模式
  • 设计模式
    • 设计模式 - Java三种代理模式
  • 设计模式
    • 设计模式 - 六大设计原则
  • 设计模式
    • 设计模式 - 单例模式
  • 设计模式
    • 设计模式 - 命名模式
  • 设计模式
    • 设计模式 - 备忘录模式
  • 设计模式
    • 设计模式 - 概览
  • 设计模式
    • 设计模式 - 没用的设计模式
  • 质量&效率
    • Homebrew 替换国内镜像源
  • 质量&效率
    • 工作中如何做好技术积累
  • Java FrameWorks
    • Logback
      • 自定义 logback 日志过滤器
  • Java FrameWorks
    • Mybatis
      • MyBatis(十三) - 整合Spring
  • Java FrameWorks
    • Mybatis
      • MyBatis(十二) - 一些API
  • Java FrameWorks
    • Mybatis
      • Mybatis(一) - 概述
  • Java FrameWorks
    • Mybatis
      • Mybatis(七) - 结果集的封装与映射
  • Java FrameWorks
    • Mybatis
      • Mybatis(三) - mapper.xml及其加载机制
  • Java FrameWorks
    • Mybatis
      • Mybatis(九) - 事务
  • Java FrameWorks
    • Mybatis
      • Mybatis(二) - 全局配置文件及其加载机制
  • Java FrameWorks
    • Mybatis
      • Mybatis(五) - SqlSession执行流程
  • Java FrameWorks
    • Mybatis
      • Mybatis(八) - 缓存
  • Java FrameWorks
    • Mybatis
      • Mybatis(六) - 动态SQL的参数绑定与执行
  • Java FrameWorks
    • Mybatis
      • Mybatis(十) - 插件
  • Java FrameWorks
    • Mybatis
      • Mybatis(十一) - 日志
  • Java FrameWorks
    • Mybatis
      • Mybatis(四) - Mapper接口解析
  • Java FrameWorks
    • Netty
      • Netty 可靠性分析
  • Java FrameWorks
    • Netty
      • Netty - Netty 线程模型
  • Java FrameWorks
    • Netty
      • Netty堆外内存泄露排查盛宴
  • Java FrameWorks
    • Netty
      • Netty高级 - 高性能之道
  • Java FrameWorks
    • Shiro
      • Shiro + JWT + Spring Boot Restful 简易教程
  • Java FrameWorks
    • Shiro
      • 非常详尽的 Shiro 架构解析!
  • Java FrameWorks
    • Spring
      • Spring AOP 使用介绍,从前世到今生
  • Java FrameWorks
    • Spring
      • Spring AOP 源码解析
  • Java FrameWorks
    • Spring
      • Spring Event 实现原理
  • Java FrameWorks
    • Spring
      • Spring Events
  • Java FrameWorks
    • Spring
      • Spring IOC容器源码分析
  • Java FrameWorks
    • Spring
      • Spring Integration简介
  • Java FrameWorks
    • Spring
      • Spring MVC 框架中拦截器 Interceptor 的使用方法
  • Java FrameWorks
    • Spring
      • Spring bean 解析、注册、实例化流程源码剖析
  • Java FrameWorks
    • Spring
      • Spring validation中@NotNull、@NotEmpty、@NotBlank的区别
  • Java FrameWorks
    • Spring
      • Spring 如何解决循环依赖?
  • Java FrameWorks
    • Spring
      • Spring 异步实现原理与实战分享
  • Java FrameWorks
    • Spring
      • Spring中的“for update”问题
  • Java FrameWorks
    • Spring
      • Spring中的设计模式
  • Java FrameWorks
    • Spring
      • Spring事务失效的 8 大原因
  • Java FrameWorks
    • Spring
      • Spring事务管理详解
  • Java FrameWorks
    • Spring
      • Spring计时器StopWatch使用
  • Java FrameWorks
    • Spring
      • 详述 Spring MVC 框架中拦截器 Interceptor 的使用方法
  • Java FrameWorks
    • Spring
      • 透彻的掌握 Spring 中@transactional 的使用
  • Java
    • Java IO&NIO&AIO
      • Java IO - BIO 详解
  • Java
    • Java IO&NIO&AIO
      • Java NIO - IO多路复用详解
  • Java
    • Java IO&NIO&AIO
      • Java N(A)IO - Netty
  • Java
    • Java IO&NIO&AIO
      • Java IO - Unix IO模型
  • Java
    • Java IO&NIO&AIO
      • Java IO - 分类
  • Java
    • Java IO&NIO&AIO
      • Java NIO - 基础详解
  • Java
    • Java IO&NIO&AIO
      • Java IO - 常见类使用
  • Java
    • Java IO&NIO&AIO
      • Java AIO - 异步IO详解
  • Java
    • Java IO&NIO&AIO
      • Java IO概述
  • Java
    • Java IO&NIO&AIO
      • Java IO - 设计模式
  • Java
    • Java IO&NIO&AIO
      • Java NIO - 零拷贝实现
  • Java
    • Java JVM
      • JVM 优化经验总结
  • Java
    • Java JVM
      • JVM 内存结构
  • Java
    • Java JVM
      • JVM参数设置
  • Java
    • Java JVM
      • Java 内存模型
  • Java
    • Java JVM
      • 从实际案例聊聊Java应用的GC优化
  • Java
    • Java JVM
      • Java 垃圾回收器G1详解
  • Java
    • Java JVM
      • 垃圾回收器Shenandoah GC详解
  • Java
    • Java JVM
      • 垃圾回收器ZGC详解
  • Java
    • Java JVM
      • 垃圾回收基础
  • Java
    • Java JVM
      • 如何优化Java GC
  • Java
    • Java JVM
      • 类加载机制
  • Java
    • Java JVM
      • 类字节码详解
  • Java
    • Java 基础
      • Java hashCode() 和 equals()
  • Java
    • Java 基础
      • Java 基础 - Java native方法以及JNI实践
  • Java
    • Java 基础
      • Java serialVersionUID 有什么作用?
  • Java
    • Java 基础
      • Java 泛型的类型擦除
  • Java
    • Java 基础
      • Java 基础 - Unsafe类解析
  • Java
    • Java 基础
      • Difference Between Statement and PreparedStatement
  • Java
    • Java 基础
      • Java 基础 - SPI机制详解
  • Java
    • Java 基础
      • Java 基础 - final
  • Java
    • Java 基础
      • Java中static关键字详解
  • Java
    • Java 基础
      • 为什么说Java中只有值传递?
  • Java
    • Java 基础
      • Java 基础 - 即时编译器原理解析及实践
  • Java
    • Java 基础
      • Java 基础 - 反射
  • Java
    • Java 基础
      • Java多态的面试题
  • Java
    • Java 基础
      • Java 基础 - 异常机制详解
  • Java
    • Java 基础
      • 为什么要有抽象类?
  • Java
    • Java 基础
      • 接口的本质
  • Java
    • Java 基础
      • Java 基础 - 枚举
  • Java
    • Java 基础
      • Java 基础 - 泛型机制详解
  • Java
    • Java 基础
      • Java 基础 - 注解机制详解
  • Java
    • Java 基础
      • 为什么 String hashCode 方法选择数字31作为乘子
  • Java
    • Java 并发
      • Java 并发 - 14个Java并发容器
  • Java
    • Java 并发
      • Java 并发 - AQS
  • Java
    • Java 并发
      • Java 并发 - BlockingQueue
  • Java
    • Java 并发
      • Java 并发 - CAS
  • Java
    • Java 并发
      • Java 并发 - Condition接口
  • Java
    • Java 并发
      • Java 并发 - CopyOnWriteArrayList
  • Java
    • Java 并发
      • Java 并发 - CountDownLatch、CyclicBarrier和Phaser对比
  • Java
    • Java 并发
      • Java 并发 - Fork&Join框架
  • Java
    • Java 并发
      • Java 并发 - Java CompletableFuture 详解
  • Java
    • Java 并发
      • Java 并发 - Java 线程池
  • Java
    • Java 并发
      • Java 并发 - Lock接口
  • Java
    • Java 并发
      • Java 并发 - ReentrantLock
  • Java
    • Java 并发
      • Java 并发 - ReentrantReadWriteLock
  • Java
    • Java 并发
      • Java 并发 - Synchronized
  • Java
    • Java 并发
      • Java 并发 - ThreadLocal 内存泄漏问题
  • Java
    • Java 并发
      • Java 并发 - ThreadLocal
  • Java
    • Java 并发
      • Java 并发 - Volatile
  • Java
    • Java 并发
      • Java 并发 - 从ReentrantLock的实现看AQS的原理及应用
  • Java
    • Java 并发
      • Java 并发 - 公平锁和非公平锁
  • Java
    • Java 并发
      • Java 并发 - 内存模型
  • Java
    • Java 并发
      • Java 并发 - 原子类
  • Java
    • Java 并发
      • Java 并发 - 如何确保三个线程顺序执行?
  • Java
    • Java 并发
      • Java 并发 - 锁
  • Java
    • Java 的新特性
      • Java 10 新特性概述
  • Java
    • Java 的新特性
      • Java 11 新特性概述
  • Java
    • Java 的新特性
      • Java 12 新特性概述
  • Java
    • Java 的新特性
      • Java 13 新特性概述
  • Java
    • Java 的新特性
      • Java 14 新特性概述
  • Java
    • Java 的新特性
      • Java 15 新特性概述
  • Java
    • Java 的新特性
      • Java 8的新特性
  • Java
    • Java 的新特性
      • Java 9 新特性概述
  • Java
    • Java 调试排错
      • 调试排错 - Java Debug Interface(JDI)详解
  • Java
    • Java 调试排错
      • 调试排错 - CPU 100% 排查优化实践
  • Java
    • Java 调试排错
      • 调试排错 - Java Heap Dump分析
  • Java
    • Java 调试排错
      • 调试排错 - Java Thread Dump分析
  • Java
    • Java 调试排错
      • 调试排错 - Java动态调试技术原理
  • Java
    • Java 调试排错
      • 调试排错 - Java应用在线调试Arthas
  • Java
    • Java 调试排错
      • 调试排错 - Java问题排查:工具单
  • Java
    • Java 调试排错
      • 调试排错 - 内存溢出与内存泄漏
  • Java
    • Java 调试排错
      • 调试排错 - 在线分析GC日志的网站GCeasy
  • Java
    • Java 调试排错
      • 调试排错 - 常见的GC问题分析与解决
  • Java
    • Java 集合
      • Java 集合 - ArrayList
  • Java
    • Java 集合
      • Java 集合 - HashMap 和 ConcurrentHashMap
  • Java
    • Java 集合
      • Java 集合 - HashMap的死循环问题
  • Java
    • Java 集合
      • Java 集合 - LinkedHashSet&Map
  • Java
    • Java 集合
      • Java 集合 - LinkedList
  • Java
    • Java 集合
      • Java 集合 - PriorityQueue
  • Java
    • Java 集合
      • Java 集合 - Stack & Queue
  • Java
    • Java 集合
      • Java 集合 - TreeSet & TreeMap
  • Java
    • Java 集合
      • Java 集合 - WeakHashMap
  • Java
    • Java 集合
      • Java 集合 - 为什么HashMap的容量是2的幂次方
  • Java
    • Java 集合
      • Java 集合 - 概览
  • Java
    • Java 集合
      • Java 集合 - 高性能队列Disruptor详解
  • 分布式
    • RPC
      • ⭐️RPC - Dubbo&hsf&Spring cloud的区别
  • 分布式
    • RPC
      • ⭐️RPC - Dubbo的架构原理
  • 分布式
    • RPC
      • ⭐️RPC - HSF的原理分析
  • 分布式
    • RPC
      • ⭐️RPC - 你应该知道的RPC原理
  • 分布式
    • RPC
      • ⭐️RPC - 动态代理
  • 分布式
    • RPC
      • 深入理解 RPC 之协议篇
  • 分布式
    • RPC
      • RPC - 序列化和反序列化
  • 分布式
    • RPC
      • ⭐️RPC - 服务注册与发现
  • 分布式
    • RPC
      • RPC - 核心原理
  • 分布式
    • RPC
      • ⭐️RPC - 框架对比
  • 分布式
    • RPC
      • ⭐️RPC - 网络通信
  • 分布式
    • 分布式事务
      • 分布式事务 Seata TCC 模式深度解析
  • 分布式
    • 分布式事务
      • 分布式事务的实现原理
  • 分布式
    • 分布式事务
      • 常用的分布式事务解决方案
  • 分布式
    • 分布式事务
      • 手写实现基于消息队列的分布式事务框架
  • 分布式
    • 分布式算法
      • CAP 定理的含义
  • 分布式
    • 分布式算法
      • Paxos和Raft比较
  • 分布式
    • 分布式算法
      • 分布式一致性与共识算法
  • 分布式
    • 分布式锁
      • ⭐️分布式锁的原理及实现方式
  • 分布式
    • 搜索引擎
      • ElasticSearch与SpringBoot的集成与JPA方法的使用
  • 分布式
    • 搜索引擎
      • 全文搜索引擎 Elasticsearch 入门教程
  • 分布式
    • 搜索引擎
      • 十分钟学会使用 Elasticsearch 优雅搭建自己的搜索系统
  • 分布式
    • 搜索引擎
      • 腾讯万亿级 Elasticsearch 技术解密
  • 分布式
    • 日志系统
      • Grafana Loki 简明教程
  • 分布式
    • 日志系统
      • 分布式系统中如何优雅地追踪日志
  • 分布式
    • 日志系统
      • 如何优雅地记录操作日志?
  • 分布式
    • 日志系统
      • 日志收集组件—Flume、Logstash、Filebeat对比
  • 分布式
    • 日志系统
      • 集中式日志系统 ELK 协议栈详解
  • 分布式
    • 消息队列
      • 消息队列 - Kafka
  • 分布式
    • 消息队列
      • 消息队列 - Kafka、RabbitMQ、RocketMQ等消息中间件的对比
  • 分布式
    • 消息队列
      • 消息队列之 RabbitMQ
  • 分布式
    • 消息队列
      • 消息队列 - 使用docker-compose构建kafka集群
  • 分布式
    • 消息队列
      • 消息队列 - 分布式系统与消息的投递
  • 分布式
    • 消息队列
      • 消息队列 - 如何保证消息的可靠性传输
  • 分布式
    • 消息队列
      • 消息队列 - 如何保证消息的顺序性
  • 分布式
    • 消息队列
      • 消息队列 - 如何保证消息队列的高可用
  • 分布式
    • 消息队列
      • 消息队列 - 消息队列设计精要
  • 分布式
    • 监控系统
      • 深度剖析开源分布式监控CAT
  • 大数据
    • Flink
      • Flink架构与核心组件
  • 微服务
    • Dubbo
      • 基于dubbo的分布式应用中的统一异常处理
  • 微服务
    • Dubbo
      • Vim快捷键
  • 微服务
    • Service Mesh
      • Istio 是什么?
  • 微服务
    • Service Mesh
      • OCTO 2.0:美团基于Service Mesh的服务治理系统详解
  • 微服务
    • Service Mesh
      • Service Mesh是什么?
  • 微服务
    • Service Mesh
      • Spring Cloud向Service Mesh迁移
  • 微服务
    • Service Mesh
      • 数据挖掘算法
  • 微服务
    • Service Mesh
      • Seata Saga 模式
  • 微服务
    • Spring Cloud
      • Seata TCC 模式
  • 微服务
    • Spring Cloud
      • Spring Cloud Config
  • 微服务
    • Spring Cloud
      • Seata AT 模式
  • 微服务
    • Spring Cloud
      • Spring Cloud Gateway
  • 微服务
    • Spring Cloud
      • Spring Cloud OpenFeign 的核心原理
  • 微服务
    • Spring Cloud
      • Seata XA 模式
  • 数据库
    • Database Version Control
      • Liquibase vs. Flyway
  • 数据库
    • Database Version Control
      • Six reasons to version control your database
  • 数据库
    • MySQL
      • How Sharding Works
  • 数据库
    • MySQL
      • MySQL InnoDB中各种SQL语句加锁分析
  • 数据库
    • MySQL
      • MySQL 事务隔离级别和锁
  • 数据库
    • MySQL
      • MySQL 索引性能分析概要
  • 数据库
    • MySQL
      • MySQL 索引设计概要
  • 数据库
    • MySQL
      • MySQL出现Waiting for table metadata lock的原因以及解决方法
  • 数据库
    • MySQL
      • MySQL的Limit性能问题
  • 数据库
    • MySQL
      • MySQL索引优化explain
  • 数据库
    • MySQL
      • MySQL索引背后的数据结构及算法原理
  • 数据库
    • MySQL
      • MySQL行转列、列转行问题
  • 数据库
    • MySQL
      • 一条SQL更新语句是如何执行的?
  • 数据库
    • MySQL
      • 一条SQL查询语句是如何执行的?
  • 数据库
    • MySQL
      • 为什么 MySQL 使用 B+ 树
  • 数据库
    • MySQL
      • 为什么 MySQL 的自增主键不单调也不连续
  • 数据库
    • MySQL
      • 为什么我的MySQL会“抖”一下?
  • 数据库
    • MySQL
      • 为什么数据库不应该使用外键
  • 数据库
    • MySQL
      • 为什么数据库会丢失数据
  • 数据库
    • MySQL
      • 事务的可重复读的能力是怎么实现的?
  • 数据库
    • MySQL
      • 大众点评订单系统分库分表实践
  • 数据库
    • MySQL
      • 如何保证缓存与数据库双写时的数据一致性?
  • 数据库
    • MySQL
      • 浅谈数据库并发控制 - 锁和 MVCC
  • 数据库
    • MySQL
      • 深入浅出MySQL 中事务的实现
  • 数据库
    • MySQL
      • 浅入浅出MySQL 和 InnoDB
  • 数据库
    • PostgreSQL
      • PostgreSQL upsert功能(insert on conflict do)的用法
  • 数据库
    • Redis
      • Redis GEO & 实现原理深度分析
  • 数据库
    • Redis
      • Redis 和 I/O 多路复用
  • 数据库
    • Redis
      • Redis分布式锁
  • 数据库
    • Redis
      • Redis实现分布式锁中的“坑”
  • 数据库
    • Redis
      • Redis总结
  • 数据库
    • Redis
      • 史上最全Redis高可用技术解决方案大全
  • 数据库
    • Redis
      • Redlock:Redis分布式锁最牛逼的实现
  • 数据库
    • Redis
      • 为什么 Redis 选择单线程模型
  • 数据库
    • TiDB
      • 新一代数据库TiDB在美团的实践
  • 数据库
    • 数据仓库
      • 实时数仓在有赞的实践
  • 数据库
    • 数据库原理
      • OLTP与OLAP的关系是什么?
  • 数据库
    • 数据库原理
      • 为什么 OLAP 需要列式存储
  • 系统设计
    • DDD
      • Domain Primitive
  • 系统设计
    • DDD
      • Repository模式
  • 系统设计
    • DDD
      • 应用架构
  • 系统设计
    • DDD
      • 聊聊如何避免写流水账代码
  • 系统设计
    • DDD
      • 领域层设计规范
  • 系统设计
    • DDD
      • 从三明治到六边形
  • 系统设计
    • DDD
      • 阿里盒马领域驱动设计实践
  • 系统设计
    • DDD
      • 领域驱动设计(DDD)编码实践
  • 系统设计
    • DDD
      • 领域驱动设计在互联网业务开发中的实践
  • 系统设计
    • 基础架构
      • 容错,高可用和灾备
  • 系统设计
    • 数据聚合
      • GraphQL及元数据驱动架构在后端BFF中的实践
  • 系统设计
    • 数据聚合
      • 高效研发-闲鱼在数据聚合上的探索与实践
  • 系统设计
    • 服务安全
      • JSON Web Token 入门教程
  • 系统设计
    • 服务安全
      • 你还在用JWT做身份认证嘛?
  • 系统设计
    • 服务安全
      • 凭证(Credentials)
  • 系统设计
    • 服务安全
      • 授权(Authorization)
  • 系统设计
    • 服务安全
      • 理解OAuth2.0
  • 系统设计
    • 服务安全
      • 认证(Authentication)
  • 系统设计
    • 架构案例
      • 微信 Android 客户端架构演进之路
  • 系统设计
    • 高可用架构
      • 业务高可用的保障:异地多活架构
  • 计算机基础
    • 字符编码
      • Base64原理解析
  • 计算机基础
    • 字符编码
      • 字符编码笔记:ASCII,Unicode 和 UTF-8
  • 计算机基础
    • 操作系统
      • 为什么 CPU 访问硬盘很慢
  • 计算机基础
    • 操作系统
      • 为什么 HTTPS 需要 7 次握手以及 9 倍时延
  • 计算机基础
    • 操作系统
      • 为什么 Linux 默认页大小是 4KB
  • 计算机基础
    • 操作系统
      • 磁盘IO那些事
  • 计算机基础
    • 操作系统
      • 虚拟机的3种网络模式
  • 计算机基础
    • 服务器
      • mac终端bash、zsh、oh-my-zsh最实用教程
  • 计算机基础
    • 服务器
      • Nginx强制跳转Https
  • 计算机基础
    • 服务器
      • curl 的用法指南
  • 计算机基础
    • 网络安全
      • 如何设计一个安全的对外接口?
  • 计算机基础
    • 网络安全
      • 浅谈常见的七种加密算法及实现
  • 计算机基础
    • 网络编程
      • MQTT - The Standard for IoT Messaging
  • 计算机基础
    • 网络编程
      • 两万字长文 50+ 张趣图带你领悟网络编程的内功心法
  • 计算机基础
    • 网络编程
      • 为什么 TCP 协议有 TIME_WAIT 状态
  • 计算机基础
    • 网络编程
      • 为什么 TCP 协议有性能问题
  • 计算机基础
    • 网络编程
      • 为什么 TCP 协议有粘包问题
  • 计算机基础
    • 网络编程
      • 为什么 TCP 建立连接需要三次握手
  • 计算机基础
    • 网络编程
      • 为什么 TCP/IP 协议会拆分数据
  • 计算机基础
    • 网络编程
      • 使用 OAuth 2 和 JWT 为微服务提供安全保障
  • 计算机基础
    • 网络编程
      • 四种常见的 POST 提交数据方式
  • 计算机基础
    • 网络编程
      • 有赞TCP网络编程最佳实践
  • 计算机基础
    • 网络编程
      • 看完这篇HTTP,跟面试官扯皮就没问题了
  • 计算机基础
    • 网络编程
      • 详细解析 HTTP 与 HTTPS 的区别
  • 质量&效率
    • 快捷键
      • Idea快捷键(Mac版)
  • 质量&效率
    • 快捷键
      • Shell快捷键
  • 质量&效率
    • 快捷键
      • conduit
  • 质量&效率
    • 敏捷开发
      • Scrum的3种角色
  • 质量&效率
    • 敏捷开发
      • Scrum的4种会议
  • 质量&效率
    • 敏捷开发
      • ThoughtWorks的敏捷开发
  • 质量&效率
    • 敏捷开发
      • 敏捷开发入门教程
  • 运维&测试
    • Docker
      • Docker (容器) 的原理
  • 运维&测试
    • Docker
      • Docker Compose:链接外部容器的几种方式
  • 运维&测试
    • Docker
      • Docker 入门教程
  • 运维&测试
    • Docker
      • Docker 核心技术与实现原理
  • 运维&测试
    • Docker
      • Dockerfile 最佳实践
  • 运维&测试
    • Docker
      • Docker开启Remote API 访问 2375端口
  • 运维&测试
    • Docker
      • Watchtower - 自动更新 Docker 镜像与容器
  • 运维&测试
    • Kubernetes
      • Kubernetes 介绍
  • 运维&测试
    • Kubernetes
      • Kubernetes 在有赞的实践
  • 运维&测试
    • Kubernetes
      • Kubernetes 学习路径
  • 运维&测试
    • Kubernetes
      • Kubernetes如何改变美团的云基础设施?
  • 运维&测试
    • Kubernetes
      • Kubernetes的三种外部访问方式:NodePort、LoadBalancer 和 Ingress
  • 运维&测试
    • Kubernetes
      • 谈 Kubernetes 的架构设计与实现原理
  • 运维&测试
    • 压测
      • 全链路压测平台(Quake)在美团中的实践
  • 运维&测试
    • 测试
      • Cpress - JavaScript End to End Testing Framework
  • 运维&测试
    • 测试
      • 代码覆盖率-JaCoCo
  • 运维&测试
    • 测试
      • 浅谈代码覆盖率
  • 运维&测试
    • 测试
      • 测试中 Fakes、Mocks 以及 Stubs 概念明晰
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP中的Bean是如何被AOP代理的
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP原生动态代理和Cglib动态代理
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP实现方式(xml&注解)
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP是如何收集切面类并封装的
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP概述
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP的底层核心后置处理器
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP的延伸知识
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot - IOC(一)
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot - IOC(三)
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot - IOC(二)
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot - IOC(五)
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot - IOC(四) - 循环依赖与解决方案
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot - 启动引导
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot JarLauncher
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot Web Mvc 自动装配
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot 使用ApplicationListener监听器
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot 声明式事务
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot 嵌入式容器
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot引起的“堆外内存泄漏”排查及经验总结
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot的启动流程
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot自动化配置源码分析
  • Java FrameWorks
    • Spring
      • Spring Boot
        • 如何自定义Spring Boot Starter?
  • Java FrameWorks
    • Spring
      • Spring IOC
        • IOC - 模块装配和条件装配
  • Java FrameWorks
    • Spring
      • Spring IOC
        • IOC - 配置源(xml,注解)
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Environment
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring ApplicationContext
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring BeanDefinition
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring BeanFactory
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring BeanFactoryPostProcessor
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring BeanPostProcessor
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Bean的生命周期(一) - 概述
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Bean的生命周期(三) - 实例化阶段
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Bean的生命周期(二) - BeanDefinition
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Bean的生命周期(五) - 销毁阶段
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Bean的生命周期(四) - 初始化阶段
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring ComponentScan
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Events
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring IOC 基础篇
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring IOC 总结
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring IOC 进阶篇
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring IOC容器的生命周期
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Resource
  • Java FrameWorks
    • Spring
      • Spring MVC
        • DispatcherServlet的初始化原理
  • Java FrameWorks
    • Spring
      • Spring MVC
        • DispatcherServlet的核心工作原理
  • Java FrameWorks
    • Spring
      • Spring MVC
        • WebMvc的架构设计与组件功能解析
  • Java FrameWorks
    • Spring
      • Spring Security
        • Spring Boot 2 + Spring Security 5 + JWT 的单页应用 Restful 解决方案
  • Java FrameWorks
    • Spring
      • Spring Security
        • Spring Security Oauth
  • Java FrameWorks
    • Spring
      • Spring Security
        • Spring Security
  • Java FrameWorks
    • Spring
      • Spring WebFlux
        • DispatcherHandler的工作原理(传统方式)
  • Java FrameWorks
    • Spring
      • Spring WebFlux
        • DispatcherHandler的工作原理(函数式端点)
  • Java FrameWorks
    • Spring
      • Spring WebFlux
        • WebFlux的自动装配
  • Java FrameWorks
    • Spring
      • Spring WebFlux
        • 快速了解响应式编程与Reactive
  • Java FrameWorks
    • Spring
      • Spring WebFlux
        • 快速使用WebFlux
  • 分布式
    • 协调服务
      • Zookeeper
        • Zookeeper - 客户端之 Curator
  • 分布式
    • 协调服务
      • Zookeeper
        • 详解分布式协调服务 ZooKeeper
  • 分布式
    • 协调服务
      • etcd
        • 高可用分布式存储 etcd 的实现原理
  • 数据库
    • Database Version Control
      • Flyway
        • Database Migrations with Flyway
  • 数据库
    • Database Version Control
      • Flyway
        • How Flyway works
  • 数据库
    • Database Version Control
      • Flyway
        • Rolling Back Migrations with Flyway
  • 数据库
    • Database Version Control
      • Flyway
        • The meaning of the concept of checksums
  • 数据库
    • Database Version Control
      • Liquibase
        • Introduction to Liquibase Rollback
  • 数据库
    • Database Version Control
      • Liquibase
        • LiquiBase中文学习指南
  • 数据库
    • Database Version Control
      • Liquibase
        • Use Liquibase to Safely Evolve Your Database Schema
  • 系统设计
    • 流量控制
      • RateLimiter
        • Guava Rate Limiter实现分析
  • 系统设计
    • 流量控制
      • Sentinel
        • Sentinel 与 Hystrix 的对比
  • 系统设计
    • 流量控制
      • Sentinel
        • Sentinel工作主流程
  • 系统设计
    • 流量控制
      • 算法
        • 分布式服务限流实战
  • 系统设计
    • 解决方案
      • 秒杀系统
        • 如何设计一个秒杀系统
  • 系统设计
    • 解决方案
      • 红包系统
        • 微信高并发资金交易系统设计方案--百亿红包背后的技术支撑
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • 什么是预排序遍历树算法(MPTT,Modified Preorder Tree Traversal)
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • 加密算法
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • 推荐系统算法
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • linkerd
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • 查找算法
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • 缓存淘汰算法中的LRU和LFU
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • 负载均衡算法
  • 计算机基础
    • 数据结构与算法
      • 分布式算法
        • 分布式算法 - Paxos算法
  • 计算机基础
    • 数据结构与算法
      • 分布式算法
        • 分布式算法 - Raft算法
  • 计算机基础
    • 数据结构与算法
      • 分布式算法
        • 分布式算法 - Snowflake算法
  • 计算机基础
    • 数据结构与算法
      • 分布式算法
        • 分布式算法 - ZAB算法
  • 计算机基础
    • 数据结构与算法
      • 分布式算法
        • 分布式算法 - 一致性Hash算法
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - Bitmap & Bloom Filter
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - Map & Reduce
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - Trie树/数据库/倒排索引
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - 分治/hash/排序
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - 双层桶划分
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - 外(磁盘文件)排序
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - 布隆过滤器
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理算法
  • 计算机基础
    • 数据结构与算法
      • 字符串匹配算法
        • 字符串匹配 - 文本预处理:后缀树(Suffix Tree)
  • 计算机基础
    • 数据结构与算法
      • 字符串匹配算法
        • 字符串匹配 - 模式预处理:BM 算法 (Boyer-Moore)
  • 计算机基础
    • 数据结构与算法
      • 字符串匹配算法
        • 字符串匹配 - 模式预处理:KMP 算法(Knuth-Morris-Pratt)
  • 计算机基础
    • 数据结构与算法
      • 字符串匹配算法
        • 字符串匹配 - 模式预处理:朴素算法(Naive)(暴力破解)
  • 计算机基础
    • 数据结构与算法
      • 字符串匹配算法
        • 字符串匹配
  • 计算机基础
    • 数据结构与算法
      • 常用算法
        • 分支限界算法
  • 计算机基础
    • 数据结构与算法
      • 常用算法
        • 分治算法
  • 计算机基础
    • 数据结构与算法
      • 常用算法
        • 动态规划算法
  • 计算机基础
    • 数据结构与算法
      • 常用算法
        • 回溯算法
  • 计算机基础
    • 数据结构与算法
      • 常用算法
        • 贪心算法
  • 计算机基础
    • 数据结构与算法
      • 排序算法
        • 十大排序算法
  • 计算机基础
    • 数据结构与算法
      • 排序算法
        • 图解排序算法(一)之3种简单排序(选择,冒泡,直接插入)
  • 计算机基础
    • 数据结构与算法
      • 排序算法
        • 图解排序算法(三)之堆排序
  • 计算机基础
    • 数据结构与算法
      • 排序算法
        • 图解排序算法(二)之希尔排序
  • 计算机基础
    • 数据结构与算法
      • 排序算法
        • 图解排序算法(四)之归并排序
  • 计算机基础
    • 数据结构与算法
      • 数据结构
        • 树的高度和深度
  • 计算机基础
    • 数据结构与算法
      • 数据结构
        • 红黑树深入剖析及Java实现
  • 计算机基础
    • 数据结构与算法
      • 数据结构
        • 线性结构 - Hash
  • 计算机基础
    • 数据结构与算法
      • 数据结构
        • 线性结构 - 数组、链表、栈、队列
  • 计算机基础
    • 数据结构与算法
      • 数据结构
        • 逻辑结构 - 树
  • 运维&测试
    • 测试
      • Spock
        • Groovy 简明教程
  • 运维&测试
    • 测试
      • Spock
        • Spock 官方文档
  • 运维&测试
    • 测试
      • Spock
        • Spock单元测试框架介绍以及在美团优选的实践
  • 运维&测试
    • 测试
      • TDD
        • TDD 实践 - FizzFuzzWhizz(一)
  • 运维&测试
    • 测试
      • TDD
        • TDD 实践 - FizzFuzzWhizz(三)
  • 运维&测试
    • 测试
      • TDD
        • TDD 实践 - FizzFuzzWhizz(二)
  • 运维&测试
    • 测试
      • TDD
        • 测试驱动开发(TDD)- 原理篇
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Nacos
          • Nacos 服务注册的原理
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Nacos
          • Nacos 配置中心原理分析
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Seata
          • 服务调用过程
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Seata
          • Spring Cloud Bus
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Seata
          • Spring Cloud Consul
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Seata
          • Spring Cloud Stream
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Sentinel
          • Sentinel 与 Hystrix 的对比
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Sentinel
          • Sentinel
  • 微服务
    • Spring Cloud
      • Spring Cloud Netflix
        • Hystrix
          • How Hystrix Works
  • 微服务
    • Spring Cloud
      • Spring Cloud Netflix
        • Hystrix
          • Hystrix
  • 微服务
    • Spring Cloud
      • Spring Cloud Netflix
        • Hystrix
          • Hystrix原理与实战
  • 微服务
    • Spring Cloud
      • Spring Cloud Netflix
        • Hystrix
          • Spring Cloud Hystrix基本原理
由 GitBook 提供支持
在本页
  • 1. 前言
  • 2. ReentrantLock基本介绍
  • 3. ReentrantLock 类基本结构
  • 4. 可重入实现
  • 5. 非公平锁
  • 6. 公平锁
  • 7. 参考
  • 8. 推荐阅读

这有帮助吗?

  1. Java
  2. Java 并发

Java 并发 - ReentrantLock

上一页Java 并发下一页Java

最后更新于2年前

这有帮助吗?

转载:Java并发编程之锁机制之(ReentrantLock)重入锁

1. 前言

通过前面的文章,我们已经了解了AQS(AbstractQueuedSynchronizer)内部的实现与基本原理。现在我们来了解一下,Java中为我们提供的Lock机制下的锁实现--ReentrantLock(重入锁),阅读该篇文章之前,希望你已阅读以下文章。

  • Java并发编程之锁机制之Lock接口

  • Java并发编程之锁机制之AQS(AbstractQueuedSynchronizer)

  • Java并发编程之锁机制之LockSupport工具

  • Java并发编程之锁机制之Condition接口

2. ReentrantLock基本介绍

ReentrantLock是一种可重入的互斥锁,它具有与使用synchronized方法和语句所访问的隐式监视器锁相同的一些基本行为和语义,但功能更强大。

ReentrantLock 将由最近成功获得锁,并且还没有释放该锁的线程所拥有。当锁没有被另一个线程所拥有时,调用 lock 的线程将成功获取该锁并返回。如果当前线程已经拥有该锁,此方法将立即返回。可以使用isHeldByCurrentThread() 和 getHoldCount()方法来检查此情况是否发生。

此类的构造方法接受一个可选的公平参数。当设置为 true 时(也是当前ReentrantLock为公平锁的情况),在多个线程的争用下,这些锁倾向于将访问权授予等待时间最长的线程。否则此锁将无法保证任何特定访问顺序。与采用默认设置(使用不公平锁)相比,使用公平锁的程序在许多线程访问时表现为很低的总体吞吐量(即速度很慢,常常极其慢),但是在获得锁和保证锁分配的均衡性时差异较小。不过要注意的是,公平锁不能保证线程调度的公平性。因此,使用公平锁的众多线程中的一员可能获得多倍的成功机会,这种情况发生在其他活动线程没有被处理并且目前并未持有锁时。还要注意的是,未定时的 tryLock 方法并没有使用公平设置。因为即使其他线程正在等待,只要该锁是可用的,此方法就可以获得成功。

3. ReentrantLock 类基本结构

通过上文的简单介绍后,我相信很多小伙伴还是一脸懵逼,只知道上文我们提到了ReentrantLock与synchronized相比有相同的语义,同时其内部分为了公平锁与非公平锁两种锁的类型,且该锁是支持重进入的。那么为了方便大家理解这些知识点,我们先从其类的基本结构讲起。具体类结构如下图所示:

2020-08-19-g5KDxM

从上图中我们可以看出,在ReentrantLock类中,定义了三个静态内部类,Sync、FairSync(公平锁)、NonfairSync(非公平锁)。其中Sync继承了AQS(AbstractQueuedSynchronizer),而FairSync与NonfairSync又分别继承了Sync。关于ReentrantLock基本类结构如下所示:

public class ReentrantLock implements Lock, java.io.Serializable {
    private final Sync sync;

	//默认无参构造函数,默认为非公平锁
    public ReentrantLock() {
        sync = new NonfairSync();
    }
	//带参数的构造函数,用户自己来决定是公平锁还是非公平锁
    public ReentrantLock(boolean fair) {
        sync = fair ? new FairSync() : new NonfairSync();
    }
    //抽象基类继承AQS,公平锁与非公平锁继承该类,并分别实现其lock()方法
    abstract static class Sync extends AbstractQueuedSynchronizer {
        abstract void lock();
        //省略部分代码..
    }
    
	//非公平锁实现
    static final class NonfairSync extends Sync {...}
    
    //公平锁实现
    static final class FairSync extends Sync {....}
   
    //锁实习,根据具体子类实现调用
    public void lock() {
        sync.lock();
    }
	//响应中断的获取锁
    public void lockInterruptibly() throws InterruptedException {
        sync.acquireInterruptibly(1);
    }
	//尝试获取锁,默认采用非公平锁方法实现
    public boolean tryLock() {
        return sync.nonfairTryAcquire(1);
    }
	//超时获取锁
    public boolean tryLock(long timeout, TimeUnit unit)
            throws InterruptedException {
        return sync.tryAcquireNanos(1, unit.toNanos(timeout));
    }
	//释放锁
    public void unlock() {
        sync.release(1);
    }
    //创建锁条件(从Condetion来理解,就是创建等待队列)
    public Condition newCondition() {
        return sync.newCondition();
    }
    //省略部分代码....
}

这里为了方便大家理解ReentrantLock类的整体结构,我省略了一些代码及重新排列了一些代码的顺序。

从代码中我们可以看出。整个ReentrantLock类的实现其实都是交给了其内部FairSync与NonfairSync两个类。在ReentrantLock类中有两个构造函数,其中不带参数的构造函数中默认使用的NonfairSync(非公平锁)。另一个带参数的构造函数,用户自己来决定是FairSync(公平锁)还是非公平锁。

4. 可重入实现

在上文中,我们提到了ReentrantLock是支持重进入的,那什么是重进入呢?重进入是指任意线程在获取到锁之后能够再次获取该锁,而不会被锁阻塞。那接下来我们看看这个例子,如下所示:

class ReentrantLockDemo {
    private static final ReentrantLock lock = new ReentrantLock();
    
    public static void main(String[] args) {
        Thread thread = new Thread(new Runnable() {
            @Override
            public void run() {
                methodA();
            }
        });
        thread.start();
    }
    
    public static void methodA() {
        lock.lock();
        try {
            System.out.println("我已经进入methodA方法了");
            methodB();//方法A中继续调用方法B
        } finally {
            lock.unlock();
        }
    }

    public static void methodB() {
        lock.lock();
        try {
            System.out.println("我已经进入methodB方法了");
        } finally {
            lock.unlock();
        }
    }
}
//输出结果
我已经进入methodA方法了
我已经进入methodB方法了

在上述代码中我们声明了一个线程调用methodA()方法。同时在该方法内部我们又调用了methodB()方法。从实际的代码运行结果来看,当前线程进入方法A之后。在方法B中再次调用lock.lock();时,该线程并没有被阻塞。也就是说ReentrantLock是支持重进入的。那下面我们就一起来看看其内部的实现原理。

因为ReenTrantLock将具体实现交给了NonfairSync(非公平锁)与FairSync(公平锁)。同时又因为上述提到的两个锁,关于重进入的实现又非常相似。所以这里将采用NonfairSync(非公平锁)的重进入的实现,来进行分析。希望读者朋友们阅读到这里的时候需要注意,不是我懒哦,是真的很相似哦。

好了下面我们来看代码。关于NonfairSync代码如下所示:

static final class NonfairSync extends Sync {
        final void lock() {
            if (compareAndSetState(0, 1))////直接获取同步状态成功,那么就不再走尝试获取锁的过程
                setExclusiveOwnerThread(Thread.currentThread());
            else
                acquire(1);
        }

        protected final boolean tryAcquire(int acquires) {
            return nonfairTryAcquire(acquires);
        }
    }

当我们调用lock()方法时,通过CAS操作将AQS中的state的状态设置为1,如果成功,那么表示获取同步状态成功。那么会接着调用setExclusiveOwnerThread(Thread thread)方法来设置当前占有锁的线程。如果失败,则调用acquire(int arg)方法来获取同步状态(该方法是属于AQS中的独占式获取同步状态的方法,对该方法不熟悉的小伙伴,建议阅读Java并发编程之锁机制之AQS(AbstractQueuedSynchronizer))。而该方法内部会调用tryAcquire(int acquires)来尝试获取同步状态。通过观察,我们发现最终会调用Sync类中的nonfairTryAcquire(int acquires)方法。我们继续跟踪。

    final boolean nonfairTryAcquire(int acquires) {
		    //获取当前线程
            final Thread current = Thread.currentThread();
            int c = getState();
            //(1)判断同步状态,如果未设置,则设置同步状态
            if (c == 0) {
                if (compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            //(2)如果当前线程已经获取了同步状态,则增加同步状态的值。
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }

从代码上来看,该方法主要走两个步骤,具体如下所示:

  1. 先判断同步状态, 如果未曾设置,则设置同步状态,并设置当前占有锁的线程。

  2. 判断是否是同一线程,如果当前线程已经获取了同步状态(也就是获取了锁),那么增加同步状态的值。

也就是说,如果同一个锁获取了锁N(N为正整数)次,那么对应的同步状态(state)也就等于N。那么接下来的问题来了,如果当前线程重复N次获取了锁,那么该线程是否需要释放锁N次呢?答案当然是必须的。当我们调用ReenTrantLock的unlock()方法来释放同步状态(也就是释放锁)时,内部会调用sync.release(1);。最终会调用Sync类的tryRelease(int releases)方法。具体代码如下所示:

  protected final boolean tryRelease(int releases) {
            int c = getState() - releases;
            if (Thread.currentThread() != getExclusiveOwnerThread())
                throw new IllegalMonitorStateException();
            boolean free = false;
            if (c == 0) {
                free = true;
                setExclusiveOwnerThread(null);
            }
            setState(c);
            return free;
        }

从代码中,我们可以知道,每调用一次unlock()方法会将当前同步状态减一。也就是说如果当前线程获取了锁N次,那么获取锁的相应线程也需要调用unlock()方法N次。这也是为什么我们在之前的重入锁例子中,为什么methodB方法中也要释放锁的原因。

5. 非公平锁

在ReentrantLock中有着非公平锁与公平锁的概念,这里我先简单的介绍一下公平这两个字的含义。这里的公平是指线程获取锁的顺序。也就是说锁的获取顺序是按照当前线程请求的绝对时间顺序,当然前提条件下是该线程获取锁成功。

那么接下来,我们来分析在ReentrantLock中的非公平锁的具体实现。

这里需要大家具备AQS(AbstractQueuedSynchronizer)类的相关知识。如果大家不熟悉这块的知识。建议大家阅读Java并发编程之锁机制之AQS(AbstractQueuedSynchronizer)。

    static final class NonfairSync extends Sync {
        private static final long serialVersionUID = 7316153563782823691L;

        final void lock() {
            if (compareAndSetState(0, 1))//直接获取同步状态成功,那么就不再走尝试获取锁的过程
                setExclusiveOwnerThread(Thread.currentThread());
            else
                acquire(1);
        }
        //省略部分代码...
    }

当在ReentrantLock在非公平锁的模式下,去调用lock()方法。那么接下来最终会走AQS(AbstractQueuedSynchronizer)下的acquire(int arg)(独占式的获取同步状态),也就是如下代码:

  public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }

那么结合之前我们所讲的AQS知识,在多个线程在独占式请求共享状态下(也就是请求锁)的情况下,在AQS中的同步队列中的线程节点情况如下图所示:

那么我们试想一种情况,当Nod1中的线程执行完相应任务后,释放锁后。这个时候本来该唤醒当前线程节点的下一个节点,也就是Node2中的线程。这个时候突然另一线程突然来获取线程(这里我们用节点Node5来表示)。具体情况如下图所示:

那么根据AQS中独占式获取同步状态的逻辑。只要Node5对应的线程获取同步状态成功。那么就会出现下面的这种情况,具体情况如下图所示:

从上图中我们可以看出,由于Node5对象的线程抢占了获取同步状态(获取锁)的机会,本身应该被唤醒的Node2线程节点。因为获取同步状态失败。所以只有再次的陷入阻塞。那么综上。我们可以知道。非公平锁获取同步状态(获取锁)时不会考虑同步队列中中等待的问题。会直接尝试获取锁。也就是会存在后申请,但是会先获得同步状态(获取锁)的情况。

6. 公平锁

理解了非公平锁,再来理解公平锁就非常简单了。下面我们来看一下公平锁与非公平锁的加锁的源码:

从源码我们可以看出,非公平锁与公平锁之间的代码唯一区别就是多了一个判断条件!hasQueuedPredecessors()(图中红框所示)。那我们查看其源码(该代码在AQS中,强烈建议阅读Java并发编程之锁机制之AQS(AbstractQueuedSynchronizer))

    public final boolean hasQueuedPredecessors() {
        Node t = tail;
        Node h = head;
        Node s;
        return h != t &&
            ((s = h.next) == null || s.thread != Thread.currentThread());
    }

代码理解理解起来非常简单,就是判断当前当前head节点的next节点是不是当前请求同步状态(请求锁)的线程。也就是语句 ((s = h.next) == null || s.thread != Thread.currentThread()。那么接下来结合AQS中的同步队列我们可以得到下图:

那么综上我们可以得出,公平锁保证了线程请求的同步状态(请求锁)的顺序。不会出现另一个线程抢占的情况。

7. 参考

  • 《Java并发编程的艺术》

8. 推荐阅读

  • Java并发编程之锁机制之引导篇

  • Java并发编程之锁机制之AQS

  • Java并发编程之锁机制之LockSupport工具

2020-08-19-o5JjzF
2020-08-19-p4i9G6
2020-08-19-ZbA0LV
2020-08-19-AHk7Xs
2020-08-19-Qv0Nec