Java学习指南
  • Java 编程的逻辑
  • Java进阶
  • Java FrameWorks
  • 了解 USB Type-A,B,C 三大标准接口
  • 深入浅出DDD
  • 重构:改善既有代码的设计
  • 面试大纲
  • 云原生
    • 什么是无服务器(what is serverless)?
  • 博客
    • 深入分析Log4j 漏洞
  • 博客
    • Serverless之快速搭建Spring Boot应用
  • 博客
    • 使用 Prometheus + Grafana + Spring Boot Actuator 监控应用
  • 博客
    • 使用 Prometheus + Grafana 监控 MySQL
  • 博客
    • 使用Github Actions + Docker 部署Spring Boot应用
  • 博客
    • Redis分布式锁之Redisson的原理和实践
  • 博客
    • 数据库中的树结构应该怎样去设计
  • 学习&成长
    • 如何成为技术大牛
  • 开发工具
    • Git Commit Message Guidelines
  • 开发工具
    • git命名大全
  • 开发工具
    • Gradle vs Maven Comparison
  • 开发工具
    • Swagger2常用注解及其说明
  • 开发工具
    • 简明 VIM 练级攻略
  • 微服务
    • 十大微服务设计模式和原则
  • 微服务
    • 微服务下的身份认证和令牌管理
  • 微服务
    • 微服务坏味道之循环依赖
  • 设计模式
    • 设计模式 - JDK中的设计模式
  • 设计模式
    • 设计模式 - Java三种代理模式
  • 设计模式
    • 设计模式 - 六大设计原则
  • 设计模式
    • 设计模式 - 单例模式
  • 设计模式
    • 设计模式 - 命名模式
  • 设计模式
    • 设计模式 - 备忘录模式
  • 设计模式
    • 设计模式 - 概览
  • 设计模式
    • 设计模式 - 没用的设计模式
  • 质量&效率
    • Homebrew 替换国内镜像源
  • 质量&效率
    • 工作中如何做好技术积累
  • Java FrameWorks
    • Logback
      • 自定义 logback 日志过滤器
  • Java FrameWorks
    • Mybatis
      • MyBatis(十三) - 整合Spring
  • Java FrameWorks
    • Mybatis
      • MyBatis(十二) - 一些API
  • Java FrameWorks
    • Mybatis
      • Mybatis(一) - 概述
  • Java FrameWorks
    • Mybatis
      • Mybatis(七) - 结果集的封装与映射
  • Java FrameWorks
    • Mybatis
      • Mybatis(三) - mapper.xml及其加载机制
  • Java FrameWorks
    • Mybatis
      • Mybatis(九) - 事务
  • Java FrameWorks
    • Mybatis
      • Mybatis(二) - 全局配置文件及其加载机制
  • Java FrameWorks
    • Mybatis
      • Mybatis(五) - SqlSession执行流程
  • Java FrameWorks
    • Mybatis
      • Mybatis(八) - 缓存
  • Java FrameWorks
    • Mybatis
      • Mybatis(六) - 动态SQL的参数绑定与执行
  • Java FrameWorks
    • Mybatis
      • Mybatis(十) - 插件
  • Java FrameWorks
    • Mybatis
      • Mybatis(十一) - 日志
  • Java FrameWorks
    • Mybatis
      • Mybatis(四) - Mapper接口解析
  • Java FrameWorks
    • Netty
      • Netty 可靠性分析
  • Java FrameWorks
    • Netty
      • Netty - Netty 线程模型
  • Java FrameWorks
    • Netty
      • Netty堆外内存泄露排查盛宴
  • Java FrameWorks
    • Netty
      • Netty高级 - 高性能之道
  • Java FrameWorks
    • Shiro
      • Shiro + JWT + Spring Boot Restful 简易教程
  • Java FrameWorks
    • Shiro
      • 非常详尽的 Shiro 架构解析!
  • Java FrameWorks
    • Spring
      • Spring AOP 使用介绍,从前世到今生
  • Java FrameWorks
    • Spring
      • Spring AOP 源码解析
  • Java FrameWorks
    • Spring
      • Spring Event 实现原理
  • Java FrameWorks
    • Spring
      • Spring Events
  • Java FrameWorks
    • Spring
      • Spring IOC容器源码分析
  • Java FrameWorks
    • Spring
      • Spring Integration简介
  • Java FrameWorks
    • Spring
      • Spring MVC 框架中拦截器 Interceptor 的使用方法
  • Java FrameWorks
    • Spring
      • Spring bean 解析、注册、实例化流程源码剖析
  • Java FrameWorks
    • Spring
      • Spring validation中@NotNull、@NotEmpty、@NotBlank的区别
  • Java FrameWorks
    • Spring
      • Spring 如何解决循环依赖?
  • Java FrameWorks
    • Spring
      • Spring 异步实现原理与实战分享
  • Java FrameWorks
    • Spring
      • Spring中的“for update”问题
  • Java FrameWorks
    • Spring
      • Spring中的设计模式
  • Java FrameWorks
    • Spring
      • Spring事务失效的 8 大原因
  • Java FrameWorks
    • Spring
      • Spring事务管理详解
  • Java FrameWorks
    • Spring
      • Spring计时器StopWatch使用
  • Java FrameWorks
    • Spring
      • 详述 Spring MVC 框架中拦截器 Interceptor 的使用方法
  • Java FrameWorks
    • Spring
      • 透彻的掌握 Spring 中@transactional 的使用
  • Java
    • Java IO&NIO&AIO
      • Java IO - BIO 详解
  • Java
    • Java IO&NIO&AIO
      • Java NIO - IO多路复用详解
  • Java
    • Java IO&NIO&AIO
      • Java N(A)IO - Netty
  • Java
    • Java IO&NIO&AIO
      • Java IO - Unix IO模型
  • Java
    • Java IO&NIO&AIO
      • Java IO - 分类
  • Java
    • Java IO&NIO&AIO
      • Java NIO - 基础详解
  • Java
    • Java IO&NIO&AIO
      • Java IO - 常见类使用
  • Java
    • Java IO&NIO&AIO
      • Java AIO - 异步IO详解
  • Java
    • Java IO&NIO&AIO
      • Java IO概述
  • Java
    • Java IO&NIO&AIO
      • Java IO - 设计模式
  • Java
    • Java IO&NIO&AIO
      • Java NIO - 零拷贝实现
  • Java
    • Java JVM
      • JVM 优化经验总结
  • Java
    • Java JVM
      • JVM 内存结构
  • Java
    • Java JVM
      • JVM参数设置
  • Java
    • Java JVM
      • Java 内存模型
  • Java
    • Java JVM
      • 从实际案例聊聊Java应用的GC优化
  • Java
    • Java JVM
      • Java 垃圾回收器G1详解
  • Java
    • Java JVM
      • 垃圾回收器Shenandoah GC详解
  • Java
    • Java JVM
      • 垃圾回收器ZGC详解
  • Java
    • Java JVM
      • 垃圾回收基础
  • Java
    • Java JVM
      • 如何优化Java GC
  • Java
    • Java JVM
      • 类加载机制
  • Java
    • Java JVM
      • 类字节码详解
  • Java
    • Java 基础
      • Java hashCode() 和 equals()
  • Java
    • Java 基础
      • Java 基础 - Java native方法以及JNI实践
  • Java
    • Java 基础
      • Java serialVersionUID 有什么作用?
  • Java
    • Java 基础
      • Java 泛型的类型擦除
  • Java
    • Java 基础
      • Java 基础 - Unsafe类解析
  • Java
    • Java 基础
      • Difference Between Statement and PreparedStatement
  • Java
    • Java 基础
      • Java 基础 - SPI机制详解
  • Java
    • Java 基础
      • Java 基础 - final
  • Java
    • Java 基础
      • Java中static关键字详解
  • Java
    • Java 基础
      • 为什么说Java中只有值传递?
  • Java
    • Java 基础
      • Java 基础 - 即时编译器原理解析及实践
  • Java
    • Java 基础
      • Java 基础 - 反射
  • Java
    • Java 基础
      • Java多态的面试题
  • Java
    • Java 基础
      • Java 基础 - 异常机制详解
  • Java
    • Java 基础
      • 为什么要有抽象类?
  • Java
    • Java 基础
      • 接口的本质
  • Java
    • Java 基础
      • Java 基础 - 枚举
  • Java
    • Java 基础
      • Java 基础 - 泛型机制详解
  • Java
    • Java 基础
      • Java 基础 - 注解机制详解
  • Java
    • Java 基础
      • 为什么 String hashCode 方法选择数字31作为乘子
  • Java
    • Java 并发
      • Java 并发 - 14个Java并发容器
  • Java
    • Java 并发
      • Java 并发 - AQS
  • Java
    • Java 并发
      • Java 并发 - BlockingQueue
  • Java
    • Java 并发
      • Java 并发 - CAS
  • Java
    • Java 并发
      • Java 并发 - Condition接口
  • Java
    • Java 并发
      • Java 并发 - CopyOnWriteArrayList
  • Java
    • Java 并发
      • Java 并发 - CountDownLatch、CyclicBarrier和Phaser对比
  • Java
    • Java 并发
      • Java 并发 - Fork&Join框架
  • Java
    • Java 并发
      • Java 并发 - Java CompletableFuture 详解
  • Java
    • Java 并发
      • Java 并发 - Java 线程池
  • Java
    • Java 并发
      • Java 并发 - Lock接口
  • Java
    • Java 并发
      • Java 并发 - ReentrantLock
  • Java
    • Java 并发
      • Java 并发 - ReentrantReadWriteLock
  • Java
    • Java 并发
      • Java 并发 - Synchronized
  • Java
    • Java 并发
      • Java 并发 - ThreadLocal 内存泄漏问题
  • Java
    • Java 并发
      • Java 并发 - ThreadLocal
  • Java
    • Java 并发
      • Java 并发 - Volatile
  • Java
    • Java 并发
      • Java 并发 - 从ReentrantLock的实现看AQS的原理及应用
  • Java
    • Java 并发
      • Java 并发 - 公平锁和非公平锁
  • Java
    • Java 并发
      • Java 并发 - 内存模型
  • Java
    • Java 并发
      • Java 并发 - 原子类
  • Java
    • Java 并发
      • Java 并发 - 如何确保三个线程顺序执行?
  • Java
    • Java 并发
      • Java 并发 - 锁
  • Java
    • Java 的新特性
      • Java 10 新特性概述
  • Java
    • Java 的新特性
      • Java 11 新特性概述
  • Java
    • Java 的新特性
      • Java 12 新特性概述
  • Java
    • Java 的新特性
      • Java 13 新特性概述
  • Java
    • Java 的新特性
      • Java 14 新特性概述
  • Java
    • Java 的新特性
      • Java 15 新特性概述
  • Java
    • Java 的新特性
      • Java 8的新特性
  • Java
    • Java 的新特性
      • Java 9 新特性概述
  • Java
    • Java 调试排错
      • 调试排错 - Java Debug Interface(JDI)详解
  • Java
    • Java 调试排错
      • 调试排错 - CPU 100% 排查优化实践
  • Java
    • Java 调试排错
      • 调试排错 - Java Heap Dump分析
  • Java
    • Java 调试排错
      • 调试排错 - Java Thread Dump分析
  • Java
    • Java 调试排错
      • 调试排错 - Java动态调试技术原理
  • Java
    • Java 调试排错
      • 调试排错 - Java应用在线调试Arthas
  • Java
    • Java 调试排错
      • 调试排错 - Java问题排查:工具单
  • Java
    • Java 调试排错
      • 调试排错 - 内存溢出与内存泄漏
  • Java
    • Java 调试排错
      • 调试排错 - 在线分析GC日志的网站GCeasy
  • Java
    • Java 调试排错
      • 调试排错 - 常见的GC问题分析与解决
  • Java
    • Java 集合
      • Java 集合 - ArrayList
  • Java
    • Java 集合
      • Java 集合 - HashMap 和 ConcurrentHashMap
  • Java
    • Java 集合
      • Java 集合 - HashMap的死循环问题
  • Java
    • Java 集合
      • Java 集合 - LinkedHashSet&Map
  • Java
    • Java 集合
      • Java 集合 - LinkedList
  • Java
    • Java 集合
      • Java 集合 - PriorityQueue
  • Java
    • Java 集合
      • Java 集合 - Stack & Queue
  • Java
    • Java 集合
      • Java 集合 - TreeSet & TreeMap
  • Java
    • Java 集合
      • Java 集合 - WeakHashMap
  • Java
    • Java 集合
      • Java 集合 - 为什么HashMap的容量是2的幂次方
  • Java
    • Java 集合
      • Java 集合 - 概览
  • Java
    • Java 集合
      • Java 集合 - 高性能队列Disruptor详解
  • 分布式
    • RPC
      • ⭐️RPC - Dubbo&hsf&Spring cloud的区别
  • 分布式
    • RPC
      • ⭐️RPC - Dubbo的架构原理
  • 分布式
    • RPC
      • ⭐️RPC - HSF的原理分析
  • 分布式
    • RPC
      • ⭐️RPC - 你应该知道的RPC原理
  • 分布式
    • RPC
      • ⭐️RPC - 动态代理
  • 分布式
    • RPC
      • 深入理解 RPC 之协议篇
  • 分布式
    • RPC
      • RPC - 序列化和反序列化
  • 分布式
    • RPC
      • ⭐️RPC - 服务注册与发现
  • 分布式
    • RPC
      • RPC - 核心原理
  • 分布式
    • RPC
      • ⭐️RPC - 框架对比
  • 分布式
    • RPC
      • ⭐️RPC - 网络通信
  • 分布式
    • 分布式事务
      • 分布式事务 Seata TCC 模式深度解析
  • 分布式
    • 分布式事务
      • 分布式事务的实现原理
  • 分布式
    • 分布式事务
      • 常用的分布式事务解决方案
  • 分布式
    • 分布式事务
      • 手写实现基于消息队列的分布式事务框架
  • 分布式
    • 分布式算法
      • CAP 定理的含义
  • 分布式
    • 分布式算法
      • Paxos和Raft比较
  • 分布式
    • 分布式算法
      • 分布式一致性与共识算法
  • 分布式
    • 分布式锁
      • ⭐️分布式锁的原理及实现方式
  • 分布式
    • 搜索引擎
      • ElasticSearch与SpringBoot的集成与JPA方法的使用
  • 分布式
    • 搜索引擎
      • 全文搜索引擎 Elasticsearch 入门教程
  • 分布式
    • 搜索引擎
      • 十分钟学会使用 Elasticsearch 优雅搭建自己的搜索系统
  • 分布式
    • 搜索引擎
      • 腾讯万亿级 Elasticsearch 技术解密
  • 分布式
    • 日志系统
      • Grafana Loki 简明教程
  • 分布式
    • 日志系统
      • 分布式系统中如何优雅地追踪日志
  • 分布式
    • 日志系统
      • 如何优雅地记录操作日志?
  • 分布式
    • 日志系统
      • 日志收集组件—Flume、Logstash、Filebeat对比
  • 分布式
    • 日志系统
      • 集中式日志系统 ELK 协议栈详解
  • 分布式
    • 消息队列
      • 消息队列 - Kafka
  • 分布式
    • 消息队列
      • 消息队列 - Kafka、RabbitMQ、RocketMQ等消息中间件的对比
  • 分布式
    • 消息队列
      • 消息队列之 RabbitMQ
  • 分布式
    • 消息队列
      • 消息队列 - 使用docker-compose构建kafka集群
  • 分布式
    • 消息队列
      • 消息队列 - 分布式系统与消息的投递
  • 分布式
    • 消息队列
      • 消息队列 - 如何保证消息的可靠性传输
  • 分布式
    • 消息队列
      • 消息队列 - 如何保证消息的顺序性
  • 分布式
    • 消息队列
      • 消息队列 - 如何保证消息队列的高可用
  • 分布式
    • 消息队列
      • 消息队列 - 消息队列设计精要
  • 分布式
    • 监控系统
      • 深度剖析开源分布式监控CAT
  • 大数据
    • Flink
      • Flink架构与核心组件
  • 微服务
    • Dubbo
      • 基于dubbo的分布式应用中的统一异常处理
  • 微服务
    • Dubbo
      • Vim快捷键
  • 微服务
    • Service Mesh
      • Istio 是什么?
  • 微服务
    • Service Mesh
      • OCTO 2.0:美团基于Service Mesh的服务治理系统详解
  • 微服务
    • Service Mesh
      • Service Mesh是什么?
  • 微服务
    • Service Mesh
      • Spring Cloud向Service Mesh迁移
  • 微服务
    • Service Mesh
      • 数据挖掘算法
  • 微服务
    • Service Mesh
      • Seata Saga 模式
  • 微服务
    • Spring Cloud
      • Seata TCC 模式
  • 微服务
    • Spring Cloud
      • Spring Cloud Config
  • 微服务
    • Spring Cloud
      • Seata AT 模式
  • 微服务
    • Spring Cloud
      • Spring Cloud Gateway
  • 微服务
    • Spring Cloud
      • Spring Cloud OpenFeign 的核心原理
  • 微服务
    • Spring Cloud
      • Seata XA 模式
  • 数据库
    • Database Version Control
      • Liquibase vs. Flyway
  • 数据库
    • Database Version Control
      • Six reasons to version control your database
  • 数据库
    • MySQL
      • How Sharding Works
  • 数据库
    • MySQL
      • MySQL InnoDB中各种SQL语句加锁分析
  • 数据库
    • MySQL
      • MySQL 事务隔离级别和锁
  • 数据库
    • MySQL
      • MySQL 索引性能分析概要
  • 数据库
    • MySQL
      • MySQL 索引设计概要
  • 数据库
    • MySQL
      • MySQL出现Waiting for table metadata lock的原因以及解决方法
  • 数据库
    • MySQL
      • MySQL的Limit性能问题
  • 数据库
    • MySQL
      • MySQL索引优化explain
  • 数据库
    • MySQL
      • MySQL索引背后的数据结构及算法原理
  • 数据库
    • MySQL
      • MySQL行转列、列转行问题
  • 数据库
    • MySQL
      • 一条SQL更新语句是如何执行的?
  • 数据库
    • MySQL
      • 一条SQL查询语句是如何执行的?
  • 数据库
    • MySQL
      • 为什么 MySQL 使用 B+ 树
  • 数据库
    • MySQL
      • 为什么 MySQL 的自增主键不单调也不连续
  • 数据库
    • MySQL
      • 为什么我的MySQL会“抖”一下?
  • 数据库
    • MySQL
      • 为什么数据库不应该使用外键
  • 数据库
    • MySQL
      • 为什么数据库会丢失数据
  • 数据库
    • MySQL
      • 事务的可重复读的能力是怎么实现的?
  • 数据库
    • MySQL
      • 大众点评订单系统分库分表实践
  • 数据库
    • MySQL
      • 如何保证缓存与数据库双写时的数据一致性?
  • 数据库
    • MySQL
      • 浅谈数据库并发控制 - 锁和 MVCC
  • 数据库
    • MySQL
      • 深入浅出MySQL 中事务的实现
  • 数据库
    • MySQL
      • 浅入浅出MySQL 和 InnoDB
  • 数据库
    • PostgreSQL
      • PostgreSQL upsert功能(insert on conflict do)的用法
  • 数据库
    • Redis
      • Redis GEO & 实现原理深度分析
  • 数据库
    • Redis
      • Redis 和 I/O 多路复用
  • 数据库
    • Redis
      • Redis分布式锁
  • 数据库
    • Redis
      • Redis实现分布式锁中的“坑”
  • 数据库
    • Redis
      • Redis总结
  • 数据库
    • Redis
      • 史上最全Redis高可用技术解决方案大全
  • 数据库
    • Redis
      • Redlock:Redis分布式锁最牛逼的实现
  • 数据库
    • Redis
      • 为什么 Redis 选择单线程模型
  • 数据库
    • TiDB
      • 新一代数据库TiDB在美团的实践
  • 数据库
    • 数据仓库
      • 实时数仓在有赞的实践
  • 数据库
    • 数据库原理
      • OLTP与OLAP的关系是什么?
  • 数据库
    • 数据库原理
      • 为什么 OLAP 需要列式存储
  • 系统设计
    • DDD
      • Domain Primitive
  • 系统设计
    • DDD
      • Repository模式
  • 系统设计
    • DDD
      • 应用架构
  • 系统设计
    • DDD
      • 聊聊如何避免写流水账代码
  • 系统设计
    • DDD
      • 领域层设计规范
  • 系统设计
    • DDD
      • 从三明治到六边形
  • 系统设计
    • DDD
      • 阿里盒马领域驱动设计实践
  • 系统设计
    • DDD
      • 领域驱动设计(DDD)编码实践
  • 系统设计
    • DDD
      • 领域驱动设计在互联网业务开发中的实践
  • 系统设计
    • 基础架构
      • 容错,高可用和灾备
  • 系统设计
    • 数据聚合
      • GraphQL及元数据驱动架构在后端BFF中的实践
  • 系统设计
    • 数据聚合
      • 高效研发-闲鱼在数据聚合上的探索与实践
  • 系统设计
    • 服务安全
      • JSON Web Token 入门教程
  • 系统设计
    • 服务安全
      • 你还在用JWT做身份认证嘛?
  • 系统设计
    • 服务安全
      • 凭证(Credentials)
  • 系统设计
    • 服务安全
      • 授权(Authorization)
  • 系统设计
    • 服务安全
      • 理解OAuth2.0
  • 系统设计
    • 服务安全
      • 认证(Authentication)
  • 系统设计
    • 架构案例
      • 微信 Android 客户端架构演进之路
  • 系统设计
    • 高可用架构
      • 业务高可用的保障:异地多活架构
  • 计算机基础
    • 字符编码
      • Base64原理解析
  • 计算机基础
    • 字符编码
      • 字符编码笔记:ASCII,Unicode 和 UTF-8
  • 计算机基础
    • 操作系统
      • 为什么 CPU 访问硬盘很慢
  • 计算机基础
    • 操作系统
      • 为什么 HTTPS 需要 7 次握手以及 9 倍时延
  • 计算机基础
    • 操作系统
      • 为什么 Linux 默认页大小是 4KB
  • 计算机基础
    • 操作系统
      • 磁盘IO那些事
  • 计算机基础
    • 操作系统
      • 虚拟机的3种网络模式
  • 计算机基础
    • 服务器
      • mac终端bash、zsh、oh-my-zsh最实用教程
  • 计算机基础
    • 服务器
      • Nginx强制跳转Https
  • 计算机基础
    • 服务器
      • curl 的用法指南
  • 计算机基础
    • 网络安全
      • 如何设计一个安全的对外接口?
  • 计算机基础
    • 网络安全
      • 浅谈常见的七种加密算法及实现
  • 计算机基础
    • 网络编程
      • MQTT - The Standard for IoT Messaging
  • 计算机基础
    • 网络编程
      • 两万字长文 50+ 张趣图带你领悟网络编程的内功心法
  • 计算机基础
    • 网络编程
      • 为什么 TCP 协议有 TIME_WAIT 状态
  • 计算机基础
    • 网络编程
      • 为什么 TCP 协议有性能问题
  • 计算机基础
    • 网络编程
      • 为什么 TCP 协议有粘包问题
  • 计算机基础
    • 网络编程
      • 为什么 TCP 建立连接需要三次握手
  • 计算机基础
    • 网络编程
      • 为什么 TCP/IP 协议会拆分数据
  • 计算机基础
    • 网络编程
      • 使用 OAuth 2 和 JWT 为微服务提供安全保障
  • 计算机基础
    • 网络编程
      • 四种常见的 POST 提交数据方式
  • 计算机基础
    • 网络编程
      • 有赞TCP网络编程最佳实践
  • 计算机基础
    • 网络编程
      • 看完这篇HTTP,跟面试官扯皮就没问题了
  • 计算机基础
    • 网络编程
      • 详细解析 HTTP 与 HTTPS 的区别
  • 质量&效率
    • 快捷键
      • Idea快捷键(Mac版)
  • 质量&效率
    • 快捷键
      • Shell快捷键
  • 质量&效率
    • 快捷键
      • conduit
  • 质量&效率
    • 敏捷开发
      • Scrum的3种角色
  • 质量&效率
    • 敏捷开发
      • Scrum的4种会议
  • 质量&效率
    • 敏捷开发
      • ThoughtWorks的敏捷开发
  • 质量&效率
    • 敏捷开发
      • 敏捷开发入门教程
  • 运维&测试
    • Docker
      • Docker (容器) 的原理
  • 运维&测试
    • Docker
      • Docker Compose:链接外部容器的几种方式
  • 运维&测试
    • Docker
      • Docker 入门教程
  • 运维&测试
    • Docker
      • Docker 核心技术与实现原理
  • 运维&测试
    • Docker
      • Dockerfile 最佳实践
  • 运维&测试
    • Docker
      • Docker开启Remote API 访问 2375端口
  • 运维&测试
    • Docker
      • Watchtower - 自动更新 Docker 镜像与容器
  • 运维&测试
    • Kubernetes
      • Kubernetes 介绍
  • 运维&测试
    • Kubernetes
      • Kubernetes 在有赞的实践
  • 运维&测试
    • Kubernetes
      • Kubernetes 学习路径
  • 运维&测试
    • Kubernetes
      • Kubernetes如何改变美团的云基础设施?
  • 运维&测试
    • Kubernetes
      • Kubernetes的三种外部访问方式:NodePort、LoadBalancer 和 Ingress
  • 运维&测试
    • Kubernetes
      • 谈 Kubernetes 的架构设计与实现原理
  • 运维&测试
    • 压测
      • 全链路压测平台(Quake)在美团中的实践
  • 运维&测试
    • 测试
      • Cpress - JavaScript End to End Testing Framework
  • 运维&测试
    • 测试
      • 代码覆盖率-JaCoCo
  • 运维&测试
    • 测试
      • 浅谈代码覆盖率
  • 运维&测试
    • 测试
      • 测试中 Fakes、Mocks 以及 Stubs 概念明晰
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP中的Bean是如何被AOP代理的
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP原生动态代理和Cglib动态代理
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP实现方式(xml&注解)
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP是如何收集切面类并封装的
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP概述
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP的底层核心后置处理器
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP的延伸知识
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot - IOC(一)
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot - IOC(三)
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot - IOC(二)
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot - IOC(五)
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot - IOC(四) - 循环依赖与解决方案
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot - 启动引导
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot JarLauncher
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot Web Mvc 自动装配
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot 使用ApplicationListener监听器
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot 声明式事务
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot 嵌入式容器
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot引起的“堆外内存泄漏”排查及经验总结
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot的启动流程
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot自动化配置源码分析
  • Java FrameWorks
    • Spring
      • Spring Boot
        • 如何自定义Spring Boot Starter?
  • Java FrameWorks
    • Spring
      • Spring IOC
        • IOC - 模块装配和条件装配
  • Java FrameWorks
    • Spring
      • Spring IOC
        • IOC - 配置源(xml,注解)
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Environment
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring ApplicationContext
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring BeanDefinition
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring BeanFactory
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring BeanFactoryPostProcessor
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring BeanPostProcessor
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Bean的生命周期(一) - 概述
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Bean的生命周期(三) - 实例化阶段
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Bean的生命周期(二) - BeanDefinition
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Bean的生命周期(五) - 销毁阶段
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Bean的生命周期(四) - 初始化阶段
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring ComponentScan
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Events
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring IOC 基础篇
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring IOC 总结
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring IOC 进阶篇
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring IOC容器的生命周期
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Resource
  • Java FrameWorks
    • Spring
      • Spring MVC
        • DispatcherServlet的初始化原理
  • Java FrameWorks
    • Spring
      • Spring MVC
        • DispatcherServlet的核心工作原理
  • Java FrameWorks
    • Spring
      • Spring MVC
        • WebMvc的架构设计与组件功能解析
  • Java FrameWorks
    • Spring
      • Spring Security
        • Spring Boot 2 + Spring Security 5 + JWT 的单页应用 Restful 解决方案
  • Java FrameWorks
    • Spring
      • Spring Security
        • Spring Security Oauth
  • Java FrameWorks
    • Spring
      • Spring Security
        • Spring Security
  • Java FrameWorks
    • Spring
      • Spring WebFlux
        • DispatcherHandler的工作原理(传统方式)
  • Java FrameWorks
    • Spring
      • Spring WebFlux
        • DispatcherHandler的工作原理(函数式端点)
  • Java FrameWorks
    • Spring
      • Spring WebFlux
        • WebFlux的自动装配
  • Java FrameWorks
    • Spring
      • Spring WebFlux
        • 快速了解响应式编程与Reactive
  • Java FrameWorks
    • Spring
      • Spring WebFlux
        • 快速使用WebFlux
  • 分布式
    • 协调服务
      • Zookeeper
        • Zookeeper - 客户端之 Curator
  • 分布式
    • 协调服务
      • Zookeeper
        • 详解分布式协调服务 ZooKeeper
  • 分布式
    • 协调服务
      • etcd
        • 高可用分布式存储 etcd 的实现原理
  • 数据库
    • Database Version Control
      • Flyway
        • Database Migrations with Flyway
  • 数据库
    • Database Version Control
      • Flyway
        • How Flyway works
  • 数据库
    • Database Version Control
      • Flyway
        • Rolling Back Migrations with Flyway
  • 数据库
    • Database Version Control
      • Flyway
        • The meaning of the concept of checksums
  • 数据库
    • Database Version Control
      • Liquibase
        • Introduction to Liquibase Rollback
  • 数据库
    • Database Version Control
      • Liquibase
        • LiquiBase中文学习指南
  • 数据库
    • Database Version Control
      • Liquibase
        • Use Liquibase to Safely Evolve Your Database Schema
  • 系统设计
    • 流量控制
      • RateLimiter
        • Guava Rate Limiter实现分析
  • 系统设计
    • 流量控制
      • Sentinel
        • Sentinel 与 Hystrix 的对比
  • 系统设计
    • 流量控制
      • Sentinel
        • Sentinel工作主流程
  • 系统设计
    • 流量控制
      • 算法
        • 分布式服务限流实战
  • 系统设计
    • 解决方案
      • 秒杀系统
        • 如何设计一个秒杀系统
  • 系统设计
    • 解决方案
      • 红包系统
        • 微信高并发资金交易系统设计方案--百亿红包背后的技术支撑
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • 什么是预排序遍历树算法(MPTT,Modified Preorder Tree Traversal)
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • 加密算法
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • 推荐系统算法
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • linkerd
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • 查找算法
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • 缓存淘汰算法中的LRU和LFU
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • 负载均衡算法
  • 计算机基础
    • 数据结构与算法
      • 分布式算法
        • 分布式算法 - Paxos算法
  • 计算机基础
    • 数据结构与算法
      • 分布式算法
        • 分布式算法 - Raft算法
  • 计算机基础
    • 数据结构与算法
      • 分布式算法
        • 分布式算法 - Snowflake算法
  • 计算机基础
    • 数据结构与算法
      • 分布式算法
        • 分布式算法 - ZAB算法
  • 计算机基础
    • 数据结构与算法
      • 分布式算法
        • 分布式算法 - 一致性Hash算法
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - Bitmap & Bloom Filter
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - Map & Reduce
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - Trie树/数据库/倒排索引
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - 分治/hash/排序
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - 双层桶划分
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - 外(磁盘文件)排序
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - 布隆过滤器
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理算法
  • 计算机基础
    • 数据结构与算法
      • 字符串匹配算法
        • 字符串匹配 - 文本预处理:后缀树(Suffix Tree)
  • 计算机基础
    • 数据结构与算法
      • 字符串匹配算法
        • 字符串匹配 - 模式预处理:BM 算法 (Boyer-Moore)
  • 计算机基础
    • 数据结构与算法
      • 字符串匹配算法
        • 字符串匹配 - 模式预处理:KMP 算法(Knuth-Morris-Pratt)
  • 计算机基础
    • 数据结构与算法
      • 字符串匹配算法
        • 字符串匹配 - 模式预处理:朴素算法(Naive)(暴力破解)
  • 计算机基础
    • 数据结构与算法
      • 字符串匹配算法
        • 字符串匹配
  • 计算机基础
    • 数据结构与算法
      • 常用算法
        • 分支限界算法
  • 计算机基础
    • 数据结构与算法
      • 常用算法
        • 分治算法
  • 计算机基础
    • 数据结构与算法
      • 常用算法
        • 动态规划算法
  • 计算机基础
    • 数据结构与算法
      • 常用算法
        • 回溯算法
  • 计算机基础
    • 数据结构与算法
      • 常用算法
        • 贪心算法
  • 计算机基础
    • 数据结构与算法
      • 排序算法
        • 十大排序算法
  • 计算机基础
    • 数据结构与算法
      • 排序算法
        • 图解排序算法(一)之3种简单排序(选择,冒泡,直接插入)
  • 计算机基础
    • 数据结构与算法
      • 排序算法
        • 图解排序算法(三)之堆排序
  • 计算机基础
    • 数据结构与算法
      • 排序算法
        • 图解排序算法(二)之希尔排序
  • 计算机基础
    • 数据结构与算法
      • 排序算法
        • 图解排序算法(四)之归并排序
  • 计算机基础
    • 数据结构与算法
      • 数据结构
        • 树的高度和深度
  • 计算机基础
    • 数据结构与算法
      • 数据结构
        • 红黑树深入剖析及Java实现
  • 计算机基础
    • 数据结构与算法
      • 数据结构
        • 线性结构 - Hash
  • 计算机基础
    • 数据结构与算法
      • 数据结构
        • 线性结构 - 数组、链表、栈、队列
  • 计算机基础
    • 数据结构与算法
      • 数据结构
        • 逻辑结构 - 树
  • 运维&测试
    • 测试
      • Spock
        • Groovy 简明教程
  • 运维&测试
    • 测试
      • Spock
        • Spock 官方文档
  • 运维&测试
    • 测试
      • Spock
        • Spock单元测试框架介绍以及在美团优选的实践
  • 运维&测试
    • 测试
      • TDD
        • TDD 实践 - FizzFuzzWhizz(一)
  • 运维&测试
    • 测试
      • TDD
        • TDD 实践 - FizzFuzzWhizz(三)
  • 运维&测试
    • 测试
      • TDD
        • TDD 实践 - FizzFuzzWhizz(二)
  • 运维&测试
    • 测试
      • TDD
        • 测试驱动开发(TDD)- 原理篇
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Nacos
          • Nacos 服务注册的原理
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Nacos
          • Nacos 配置中心原理分析
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Seata
          • 服务调用过程
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Seata
          • Spring Cloud Bus
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Seata
          • Spring Cloud Consul
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Seata
          • Spring Cloud Stream
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Sentinel
          • Sentinel 与 Hystrix 的对比
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Sentinel
          • Sentinel
  • 微服务
    • Spring Cloud
      • Spring Cloud Netflix
        • Hystrix
          • How Hystrix Works
  • 微服务
    • Spring Cloud
      • Spring Cloud Netflix
        • Hystrix
          • Hystrix
  • 微服务
    • Spring Cloud
      • Spring Cloud Netflix
        • Hystrix
          • Hystrix原理与实战
  • 微服务
    • Spring Cloud
      • Spring Cloud Netflix
        • Hystrix
          • Spring Cloud Hystrix基本原理
由 GitBook 提供支持
在本页
  • 0. 开始之前
  • 1. 如何将新对象预留在年轻代
  • 2. 如何让大对象进入年老代
  • 3. 如何设置对象进入年老代的年龄
  • 4. 稳定的 Java 堆 VS 动荡的 Java 堆
  • 5. 增大吞吐量提升系统性能
  • 6. 尝试使用大的内存分页
  • 7. 使用非占有的垃圾回收器
  • 8. 结束语
  • 9. 相关主题

这有帮助吗?

  1. Java
  2. Java JVM

JVM 优化经验总结

上一页Java JVM下一页Java

最后更新于2年前

这有帮助吗?

转载:

0. 开始之前

Java 虚拟机有自己完善的硬件架构, 如处理器、堆栈、寄存器等,还具有相应的指令系统。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 Java 虚拟机上运行的目标代码 (字节码), 就可以在多种平台上不加修改地运行。Java 虚拟机在执行字节码时,实际上最终还是把字节码解释成具体平台上的机器指令执行。

注意:本文仅针对 JDK7、HotSPOT Java 虚拟机,对于 JDK8 引入的 JVM 新特性及其他 Java 虚拟机,本文不予关注。

我们以一个例子开始这篇文章。假设你是一个普通的 Java 对象,你出生在 Eden 区,在 Eden 区有许多和你差不多的小兄弟、小姐妹,可以把 Eden 区当成幼儿园,在这个幼儿园里大家玩了很长时间。Eden 区不能无休止地放你们在里面,所以当年纪稍大,你就要被送到学校去上学,这里假设从小学到高中都称为 Survivor 区。开始的时候你在 Survivor 区里面划分出来的的“From”区,读到高年级了,就进了 Survivor 区的“To”区,中间由于学习成绩不稳定,还经常来回折腾。直到你 18 岁的时候,高中毕业了,该去社会上闯闯了。于是你就去了年老代,年老代里面人也很多。在年老代里,你生活了 20 年 (每次 GC 加一岁),最后寿终正寝,被 GC 回收。有一点没有提,你在年老代遇到了一个同学,他的名字叫爱德华 (慕光之城里的帅哥吸血鬼),他以及他的家族永远不会死,那么他们就生活在永生代。

之前的文章中已经介绍过年轻代、年老代、永生代,本文主要讲讲如何运用这些区域,为系统性能提供更好的帮助。本文不再重复这些概念,直接进入主题。

1. 如何将新对象预留在年轻代

众所周知,由于 Full GC 的成本远远高于 Minor GC,因此某些情况下需要尽可能将对象分配在年轻代,这在很多情况下是一个明智的选择。虽然在大部分情况下,JVM 会尝试在 Eden 区分配对象,但是由于空间紧张等问题,很可能不得不将部分年轻对象提前向年老代压缩。因此,在 JVM 参数调优时可以为应用程序分配一个合理的年轻代空间,以最大限度避免新对象直接进入年老代的情况发生。清单 1 所示代码尝试分配 4MB 内存空间,观察一下它的内存使用情况。

清单 1. 相同大小内存分配

public class PutInEden {
 public static void main(String[] args){
 byte[] b1,b2,b3,b4;//定义变量
 b1=new byte[1024*1024];//分配 1MB 堆空间,考察堆空间的使用情况
 b2=new byte[1024*1024];
 b3=new byte[1024*1024];
 b4=new byte[1024*1024];
 }
}

使用 JVM 参数-XX:+PrintGCDetails -Xmx20M -Xms20M 运行清单 1 所示代码,输出如清单 2 所示。

清单 2. 清单 1 运行输出

[GC [DefNew: 5504K->640K(6144K), 0.0114236 secs] 5504K->5352K(19840K), 
   0.0114595 secs] [Times: user=0.02 sys=0.00, real=0.02 secs] 
[GC [DefNew: 6144K->640K(6144K), 0.0131261 secs] 10856K->10782K(19840K),
0.0131612 secs] [Times: user=0.02 sys=0.00, real=0.02 secs] 
[GC [DefNew: 6144K->6144K(6144K), 0.0000170 secs][Tenured: 10142K->13695K(13696K),
0.1069249 secs] 16286K->15966K(19840K), [Perm : 376K->376K(12288K)],
0.1070058 secs] [Times: user=0.03 sys=0.00, real=0.11 secs] 
[Full GC [Tenured: 13695K->13695K(13696K), 0.0302067 secs] 19839K->19595K(19840K), 
[Perm : 376K->376K(12288K)], 0.0302635 secs] [Times: user=0.03 sys=0.00, real=0.03 secs] 
[Full GC [Tenured: 13695K->13695K(13696K), 0.0311986 secs] 19839K->19839K(19840K), 
[Perm : 376K->376K(12288K)], 0.0312515 secs] [Times: user=0.03 sys=0.00, real=0.03 secs] 
[Full GC [Tenured: 13695K->13695K(13696K), 0.0358821 secs] 19839K->19825K(19840K), 
[Perm : 376K->371K(12288K)], 0.0359315 secs] [Times: user=0.05 sys=0.00, real=0.05 secs] 
[Full GC [Tenured: 13695K->13695K(13696K), 0.0283080 secs] 19839K->19839K(19840K),
[Perm : 371K->371K(12288K)], 0.0283723 secs] [Times: user=0.02 sys=0.00, real=0.01 secs] 
[Full GC [Tenured: 13695K->13695K(13696K), 0.0284469 secs] 19839K->19839K(19840K),
[Perm : 371K->371K(12288K)], 0.0284990 secs] [Times: user=0.03 sys=0.00, real=0.03 secs] 
[Full GC [Tenured: 13695K->13695K(13696K), 0.0283005 secs] 19839K->19839K(19840K),
[Perm : 371K->371K(12288K)], 0.0283475 secs] [Times: user=0.03 sys=0.00, real=0.03 secs] 
[Full GC [Tenured: 13695K->13695K(13696K), 0.0287757 secs] 19839K->19839K(19840K),
[Perm : 371K->371K(12288K)], 0.0288294 secs] [Times: user=0.03 sys=0.00, real=0.03 secs] 
[Full GC [Tenured: 13695K->13695K(13696K), 0.0288219 secs] 19839K->19839K(19840K), 
[Perm : 371K->371K(12288K)], 0.0288709 secs] [Times: user=0.03 sys=0.00, real=0.03 secs] 
[Full GC [Tenured: 13695K->13695K(13696K), 0.0293071 secs] 19839K->19839K(19840K),
[Perm : 371K->371K(12288K)], 0.0293607 secs] [Times: user=0.03 sys=0.00, real=0.03 secs] 
[Full GC [Tenured: 13695K->13695K(13696K), 0.0356141 secs] 19839K->19838K(19840K),
[Perm : 371K->371K(12288K)], 0.0356654 secs] [Times: user=0.01 sys=0.00, real=0.03 secs] 
Heap
 def new generation total 6144K, used 6143K [0x35c10000, 0x362b0000, 0x362b0000)
 eden space 5504K, 100% used [0x35c10000, 0x36170000, 0x36170000)
 from space 640K, 99% used [0x36170000, 0x3620fc80, 0x36210000)
 to space 640K, 0% used [0x36210000, 0x36210000, 0x362b0000)
 tenured generation total 13696K, used 13695K [0x362b0000, 0x37010000, 0x37010000)
 the space 13696K, 99% used [0x362b0000, 0x3700fff8, 0x37010000, 0x37010000)
 compacting perm gen total 12288K, used 371K [0x37010000, 0x37c10000, 0x3b010000)
 the space 12288K, 3% used [0x37010000, 0x3706cd20, 0x3706ce00, 0x37c10000)
 ro space 10240K, 51% used [0x3b010000, 0x3b543000, 0x3b543000, 0x3ba10000)
 rw space 12288K, 55% used [0x3ba10000, 0x3c0ae4f8, 0x3c0ae600, 0x3c610000)

清单 2 所示的日志输出显示年轻代 Eden 的大小有 5MB 左右。分配足够大的年轻代空间,使用 JVM 参数-XX:+PrintGCDetails -Xmx20M -Xms20M-Xmn6M 运行清单 1 所示代码,输出如清单 3 所示。

清单 3. 增大 Eden 大小后清单 1 运行输出

[GC [DefNew: 4992K->576K(5568K), 0.0116036 secs] 4992K->4829K(19904K), 
 0.0116439 secs] [Times: user=0.02 sys=0.00, real=0.02 secs] 
[GC [DefNew: 5568K->576K(5568K), 0.0130929 secs] 9821K->9653K(19904K), 
0.0131336 secs] [Times: user=0.02 sys=0.00, real=0.02 secs] 
[GC [DefNew: 5568K->575K(5568K), 0.0154148 secs] 14645K->14500K(19904K),
0.0154531 secs] [Times: user=0.00 sys=0.01, real=0.01 secs] 
[GC [DefNew: 5567K->5567K(5568K), 0.0000197 secs][Tenured: 13924K->14335K(14336K),
0.0330724 secs] 19492K->19265K(19904K), [Perm : 376K->376K(12288K)],
0.0331624 secs] [Times: user=0.03 sys=0.00, real=0.03 secs] 
[Full GC [Tenured: 14335K->14335K(14336K), 0.0292459 secs] 19903K->19902K(19904K),
[Perm : 376K->376K(12288K)], 0.0293000 secs] [Times: user=0.03 sys=0.00, real=0.03 secs] 
[Full GC [Tenured: 14335K->14335K(14336K), 0.0278675 secs] 19903K->19903K(19904K),
[Perm : 376K->376K(12288K)], 0.0279215 secs] [Times: user=0.03 sys=0.00, real=0.03 secs] 
[Full GC [Tenured: 14335K->14335K(14336K), 0.0348408 secs] 19903K->19889K(19904K),
[Perm : 376K->371K(12288K)], 0.0348945 secs] [Times: user=0.05 sys=0.00, real=0.05 secs] 
[Full GC [Tenured: 14335K->14335K(14336K), 0.0299813 secs] 19903K->19903K(19904K),
[Perm : 371K->371K(12288K)], 0.0300349 secs] [Times: user=0.01 sys=0.00, real=0.02 secs] 
[Full GC [Tenured: 14335K->14335K(14336K), 0.0298178 secs] 19903K->19903K(19904K),
[Perm : 371K->371K(12288K)], 0.0298688 secs] [Times: user=0.03 sys=0.00, real=0.03 secs] 
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space[Full GC [Tenured: 
14335K->14335K(14336K), 0.0294953 secs] 19903K->19903K(19904K),
[Perm : 371K->371K(12288K)], 0.0295474 secs] [Times: user=0.03 sys=0.00, real=0.03 secs] 
[Full GC [Tenured
: 14335K->14335K(14336K), 0.0287742 secs] 19903K->19903K(19904K), 
[Perm : 371K->371K(12288K)], 0.0288239 secs] [Times: user=0.03 sys=0.00, real=0.03 secs] 
[Full GC [Tenuredat GCTimeTest.main(GCTimeTest.java:16)
: 14335K->14335K(14336K), 0.0287102 secs] 19903K->19903K(19904K),
[Perm : 371K->371K(12288K)], 0.0287627 secs] [Times: user=0.03 sys=0.00, real=0.03 secs] 
Heap
 def new generation total 5568K, used 5567K [0x35c10000, 0x36210000, 0x36210000)
 eden space 4992K, 100% used [0x35c10000, 0x360f0000, 0x360f0000)
 from space 576K, 99% used [0x36180000, 0x3620ffe8, 0x36210000)
 to space 576K, 0% used [0x360f0000, 0x360f0000, 0x36180000)
 tenured generation total 14336K, used 14335K [0x36210000, 0x37010000, 0x37010000)
 the space 14336K, 99% used [0x36210000, 0x3700ffd8, 0x37010000, 0x37010000)
 compacting perm gen total 12288K, used 371K [0x37010000, 0x37c10000, 0x3b010000)
 the space 12288K, 3% used [0x37010000, 0x3706ce28, 0x3706d000, 0x37c10000)
 ro space 10240K, 51% used [0x3b010000, 0x3b543000, 0x3b543000, 0x3ba10000)
 rw space 12288K, 55% used [0x3ba10000, 0x3c0ae4f8, 0x3c0ae600, 0x3c610000)

通过清单 2 和清单 3 对比,可以发现通过设置一个较大的年轻代预留新对象,设置合理的 Survivor 区并且提供 Survivor 区的使用率,可以将年轻对象保存在年轻代。一般来说,Survivor 区的空间不够,或者占用量达到 50%时,就会使对象进入年老代 (不管它的年龄有多大)。清单 4 创建了 3 个对象,分别分配一定的内存空间。

清单 4. 不同大小内存分配

public class PutInEden2 {
 public static void main(String[] args){
 byte[] b1,b2,b3;
 b1=new byte[1024*512];//分配 0.5MB 堆空间
 b2=new byte[1024*1024*4];//分配 4MB 堆空间
 b3=new byte[1024*1024*4];
 b3=null; //使 b3 可以被回收
 b3=new byte[1024*1024*4];//分配 4MB 堆空间
 }
}

使用参数-XX:+PrintGCDetails -Xmx1000M -Xms500M -Xmn100M -XX:SurvivorRatio=8 运行清单 4 所示代码,输出如清单 5 所示。

清单 5. 清单 4 运行输出

Heap
 def new generation total 92160K, used 11878K [0x0f010000, 0x15410000, 0x15410000)
 eden space 81920K, 2% used [0x0f010000, 0x0f1a9a20, 0x14010000)
 from space 10240K, 99% used [0x14a10000, 0x1540fff8, 0x15410000)
 to space 10240K, 0% used [0x14010000, 0x14010000, 0x14a10000)
 tenured generation total 409600K, used 86434K [0x15410000, 0x2e410000, 0x4d810000)
 the space 409600K, 21% used [0x15410000, 0x1a878b18, 0x1a878c00, 0x2e410000)
 compacting perm gen total 12288K, used 2062K [0x4d810000, 0x4e410000, 0x51810000)
 the space 12288K, 16% used [0x4d810000, 0x4da13b18, 0x4da13c00, 0x4e410000)
No shared spaces configured.

清单 5 输出的日志显示,年轻代分配了 8M,年老代也分配了 8M。我们可以尝试加上-XX:TargetSurvivorRatio=90 参数,这样可以提高 from 区的利用率,使 from 区使用到 90%时,再将对象送入年老代,运行清单 4 代码,输出如清单 6 所示。

清单 6. 修改运行参数后清单 4 输出

Heap
 def new generation total 9216K, used 9215K [0x35c10000, 0x36610000, 0x36610000)
 eden space 8192K, 100% used [0x35c10000, 0x36410000, 0x36410000)
 from space 1024K, 99% used [0x36510000, 0x3660fc50, 0x36610000)
 to space 1024K, 0% used [0x36410000, 0x36410000, 0x36510000)
 tenured generation total 10240K, used 10239K [0x36610000, 0x37010000, 0x37010000)
 the space 10240K, 99% used [0x36610000, 0x3700ff70, 0x37010000, 0x37010000)
 compacting perm gen total 12288K, used 371K [0x37010000, 0x37c10000, 0x3b010000)
 the space 12288K, 3% used [0x37010000, 0x3706cd90, 0x3706ce00, 0x37c10000)
 ro space 10240K, 51% used [0x3b010000, 0x3b543000, 0x3b543000, 0x3ba10000)
 rw space 12288K, 55% used [0x3ba10000, 0x3c0ae4f8, 0x3c0ae600, 0x3c610000)

如果将 SurvivorRatio 设置为 2,将 b1 对象预存在年轻代。输出如清单 7 所示。

清单 7. 再次修改运行参数后清单 4 输出

Heap
 def new generation total 7680K, used 7679K [0x35c10000, 0x36610000, 0x36610000)
 eden space 5120K, 100% used [0x35c10000, 0x36110000, 0x36110000)
 from space 2560K, 99% used [0x36110000, 0x3638fff0, 0x36390000)
 to space 2560K, 0% used [0x36390000, 0x36390000, 0x36610000)
 tenured generation total 10240K, used 10239K [0x36610000, 0x37010000, 0x37010000)
 the space 10240K, 99% used [0x36610000, 0x3700fff0, 0x37010000, 0x37010000)
 compacting perm gen total 12288K, used 371K [0x37010000, 0x37c10000, 0x3b010000)
 the space 12288K, 3% used [0x37010000, 0x3706ce28, 0x3706d000, 0x37c10000)
 ro space 10240K, 51% used [0x3b010000, 0x3b543000, 0x3b543000, 0x3ba10000)
rw space 12288K, 55% used [0x3ba10000, 0x3c0ae4f8, 0x3c0ae600, 0x3c610000)

2. 如何让大对象进入年老代

我们在大部分情况下都会选择将对象分配在年轻代。但是,对于占用内存较多的大对象而言,它的选择可能就不是这样的。因为大对象出现在年轻代很可能扰乱年轻代 GC,并破坏年轻代原有的对象结构。因为尝试在年轻代分配大对象,很可能导致空间不足,为了有足够的空间容纳大对象,JVM 不得不将年轻代中的年轻对象挪到年老代。因为大对象占用空间多,所以可能需要移动大量小的年轻对象进入年老代,这对 GC 相当不利。基于以上原因,可以将大对象直接分配到年老代,保持年轻代对象结构的完整性,这样可以提高 GC 的效率。如果一个大对象同时又是一个短命的对象,假设这种情况出现很频繁,那对于 GC 来说会是一场灾难。原本应该用于存放永久对象的年老代,被短命的对象塞满,这也意味着对堆空间进行了洗牌,扰乱了分代内存回收的基本思路。因此,在软件开发过程中,应该尽可能避免使用短命的大对象。可以使用参数-XX:PetenureSizeThreshold 设置大对象直接进入年老代的阈值。当对象的大小超过这个值时,将直接在年老代分配。参数-XX:PetenureSizeThreshold 只对串行收集器和年轻代并行收集器有效,并行回收收集器不识别这个参数。

清单 8. 创建一个大对象

public class BigObj2Old {
 public static void main(String[] args){
 byte[] b;
 b = new byte[1024*1024];//分配一个 1MB 的对象
 }
}

使用 JVM 参数-XX:+PrintGCDetails –Xmx20M –Xms20MB 运行,可以得到清单 9 所示日志输出。

清单 9. 清单 8 运行输出

Heap
 def new generation total 6144K, used 1378K [0x35c10000, 0x362b0000, 0x362b0000)
 eden space 5504K, 25% used [0x35c10000, 0x35d689e8, 0x36170000)
 from space 640K, 0% used [0x36170000, 0x36170000, 0x36210000)
 to space 640K, 0% used [0x36210000, 0x36210000, 0x362b0000)
 tenured generation total 13696K, used 0K [0x362b0000, 0x37010000, 0x37010000)
 the space 13696K, 0% used [0x362b0000, 0x362b0000, 0x362b0200, 0x37010000)
 compacting perm gen total 12288K, used 374K [0x37010000, 0x37c10000, 0x3b010000)
 the space 12288K, 3% used [0x37010000, 0x3706dac8, 0x3706dc00, 0x37c10000)
 ro space 10240K, 51% used [0x3b010000, 0x3b543000, 0x3b543000, 0x3ba10000)
 rw space 12288K, 55% used [0x3ba10000, 0x3c0ae4f8, 0x3c0ae600, 0x3c610000)

可以看到该对象被分配在了年轻代,占用了 25%的空间。如果需要将 1MB 以上的对象直接在年老代分配,设置-XX:PetenureSizeThreshold=1000000,程序运行后输出如清单 10 所示。

清单 10. 修改运行参数后清单 8 输出

Heap
 def new generation total 6144K, used 354K [0x35c10000, 0x362b0000, 0x362b0000)
 eden space 5504K, 6% used [0x35c10000, 0x35c689d8, 0x36170000)
 from space 640K, 0% used [0x36170000, 0x36170000, 0x36210000)
 to space 640K, 0% used [0x36210000, 0x36210000, 0x362b0000)
 tenured generation total 13696K, used 1024K [0x362b0000, 0x37010000, 0x37010000)
 the space 13696K, 7% used [0x362b0000, 0x363b0010, 0x363b0200, 0x37010000)
 compacting perm gen total 12288K, used 374K [0x37010000, 0x37c10000, 0x3b010000)
 the space 12288K, 3% used [0x37010000, 0x3706dac8, 0x3706dc00, 0x37c10000)
 ro space 10240K, 51% used [0x3b010000, 0x3b543000, 0x3b543000, 0x3ba10000)
 rw space 12288K, 55% used [0x3ba10000, 0x3c0ae4f8, 0x3c0ae600, 0x3c610000)

清单 10 里面可以看到当满 1MB 时进入到了年老代。

3. 如何设置对象进入年老代的年龄

堆中的每一个对象都有自己的年龄。一般情况下,年轻对象存放在年轻代,年老对象存放在年老代。为了做到这点,虚拟机为每个对象都维护一个年龄。如果对象在 Eden 区,经过一次 GC 后依然存活,则被移动到 Survivor 区中,对象年龄加 1。以后,如果对象每经过一次 GC 依然存活,则年龄再加 1。当对象年龄达到阈值时,就移入年老代,成为老年对象。这个阈值的最大值可以通过参数-XX:MaxTenuringThreshold 来设置,默认值是 15。虽然-XX:MaxTenuringThreshold 的值可能是 15 或者更大,但这不意味着新对象非要达到这个年龄才能进入年老代。事实上,对象实际进入年老代的年龄是虚拟机在运行时根据内存使用情况动态计算的,这个参数指定的是阈值年龄的最大值。即,实际晋升年老代年龄等于动态计算所得的年龄与-XX:MaxTenuringThreshold 中较小的那个。清单 11 所示代码为 3 个对象申请了若干内存。

清单 11. 申请内存

public class MaxTenuringThreshold {
 public static void main(String args[]){
 byte[] b1,b2,b3;
 b1 = new byte[1024*512];
 b2 = new byte[1024*1024*2];
 b3 = new byte[1024*1024*4];
 b3 = null;
 b3 = new byte[1024*1024*4];
 }
}

参数设置为:-XX:+PrintGCDetails -Xmx20M -Xms20M -Xmn10M -XX:SurvivorRatio=2

运行清单 11 所示代码,输出如清单 12 所示。

清单 12. 清单 11 运行输出

[GC [DefNew: 2986K->690K(7680K), 0.0246816 secs] 2986K->2738K(17920K),
 0.0247226 secs] [Times: user=0.00 sys=0.02, real=0.03 secs] 
[GC [DefNew: 4786K->690K(7680K), 0.0016073 secs] 6834K->2738K(17920K), 
0.0016436 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
Heap
 def new generation total 7680K, used 4888K [0x35c10000, 0x36610000, 0x36610000)
 eden space 5120K, 82% used [0x35c10000, 0x36029a18, 0x36110000)
 from space 2560K, 26% used [0x36110000, 0x361bc950, 0x36390000)
 to space 2560K, 0% used [0x36390000, 0x36390000, 0x36610000)
 tenured generation total 10240K, used 2048K [0x36610000, 0x37010000, 0x37010000)
 the space 10240K, 20% used [0x36610000, 0x36810010, 0x36810200, 0x37010000)
 compacting perm gen total 12288K, used 374K [0x37010000, 0x37c10000, 0x3b010000)
 the space 12288K, 3% used [0x37010000, 0x3706db50, 0x3706dc00, 0x37c10000)
 ro space 10240K, 51% used [0x3b010000, 0x3b543000, 0x3b543000, 0x3ba10000)
 rw space 12288K, 55% used [0x3ba10000, 0x3c0ae4f8, 0x3c0ae600, 0x3c610000)

更改参数为-XX:+PrintGCDetails -Xmx20M -Xms20M -Xmn10M -XX:SurvivorRatio=2 -XX:MaxTenuringThreshold=1,运行清单 11 所示代码,输出如清单 13 所示。

清单 13. 修改运行参数后清单 11 输出

[GC [DefNew: 2986K->690K(7680K), 0.0047778 secs] 2986K->2738K(17920K),
 0.0048161 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
[GC [DefNew: 4888K->0K(7680K), 0.0016271 secs] 6936K->2738K(17920K),
0.0016630 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
Heap
 def new generation total 7680K, used 4198K [0x35c10000, 0x36610000, 0x36610000)
 eden space 5120K, 82% used [0x35c10000, 0x36029a18, 0x36110000)
 from space 2560K, 0% used [0x36110000, 0x36110088, 0x36390000)
 to space 2560K, 0% used [0x36390000, 0x36390000, 0x36610000)
 tenured generation total 10240K, used 2738K [0x36610000, 0x37010000, 0x37010000)
 the space 10240K, 26% used [0x36610000, 0x368bc890, 0x368bca00, 0x37010000)
 compacting perm gen total 12288K, used 374K [0x37010000, 0x37c10000, 0x3b010000)
 the space 12288K, 3% used [0x37010000, 0x3706db50, 0x3706dc00, 0x37c10000)
 ro space 10240K, 51% used [0x3b010000, 0x3b543000, 0x3b543000, 0x3ba10000)
 rw space 12288K, 55% used [0x3ba10000, 0x3c0ae4f8, 0x3c0ae600, 0x3c610000)

清单 13 所示,第一次运行时 b1 对象在程序结束后依然保存在年轻代。第二次运行前,我们减小了对象晋升年老代的年龄,设置为 1。即,所有经过一次 GC 的对象都可以直接进入年老代。程序运行后,可以发现 b1 对象已经被分配到年老代。如果希望对象尽可能长时间地停留在年轻代,可以设置一个较大的阈值。

4. 稳定的 Java 堆 VS 动荡的 Java 堆

一般来说,稳定的堆大小对垃圾回收是有利的。获得一个稳定的堆大小的方法是使-Xms 和-Xmx 的大小一致,即最大堆和最小堆 (初始堆) 一样。如果这样设置,系统在运行时堆大小理论上是恒定的,稳定的堆空间可以减少 GC 的次数。因此,很多服务端应用都会将最大堆和最小堆设置为相同的数值。但是,一个不稳定的堆并非毫无用处。稳定的堆大小虽然可以减少 GC 次数,但同时也增加了每次 GC 的时间。让堆大小在一个区间中震荡,在系统不需要使用大内存时,压缩堆空间,使 GC 应对一个较小的堆,可以加快单次 GC 的速度。基于这样的考虑,JVM 还提供了两个参数用于压缩和扩展堆空间。

-XX:MinHeapFreeRatio 参数用来设置堆空间最小空闲比例,默认值是 40。当堆空间的空闲内存小于这个数值时,JVM 便会扩展堆空间。

-XX:MaxHeapFreeRatio 参数用来设置堆空间最大空闲比例,默认值是 70。当堆空间的空闲内存大于这个数值时,便会压缩堆空间,得到一个较小的堆。

当-Xmx 和-Xms 相等时,-XX:MinHeapFreeRatio 和-XX:MaxHeapFreeRatio 两个参数无效。

清单 14. 堆大小设置

import java.util.Vector;
 
public class HeapSize {
 public static void main(String args[]) throws InterruptedException{
 Vector v = new Vector();
 while(true){
 byte[] b = new byte[1024*1024];
 v.add(b);
 if(v.size() == 10){
 v = new Vector();
 }
 Thread.sleep(1);
 }
 }
}

清单 14 所示代码是测试-XX:MinHeapFreeRatio 和-XX:MaxHeapFreeRatio 的作用,设置运行参数为-XX:+PrintGCDetails -Xms10M -Xmx40M -XX:MinHeapFreeRatio=40 -XX:MaxHeapFreeRatio=50 时,输出如清单 15 所示。

清单 15. 修改运行参数后清单 14 输出

[GC [DefNew: 2418K->178K(3072K), 0.0034827 secs] 2418K->2226K(9920K),
 0.0035249 secs] [Times: user=0.00 sys=0.00, real=0.03 secs] 
[GC [DefNew: 2312K->0K(3072K), 0.0028263 secs] 4360K->4274K(9920K), 
0.0029905 secs] [Times: user=0.00 sys=0.00, real=0.03 secs] 
[GC [DefNew: 2068K->0K(3072K), 0.0024363 secs] 6342K->6322K(9920K),
0.0024836 secs] [Times: user=0.00 sys=0.00, real=0.03 secs] 
[GC [DefNew: 2061K->0K(3072K), 0.0017376 secs][Tenured: 8370K->8370K(8904K),
0.1392692 secs] 8384K->8370K(11976K), [Perm : 374K->374K(12288K)],
0.1411363 secs] [Times: user=0.00 sys=0.02, real=0.16 secs] 
[GC [DefNew: 5138K->0K(6336K), 0.0038237 secs] 13508K->13490K(20288K),
0.0038632 secs] [Times: user=0.00 sys=0.00, real=0.03 secs]

改用参数:-XX:+PrintGCDetails -Xms40M -Xmx40M -XX:MinHeapFreeRatio=40 -XX:MaxHeapFreeRatio=50,运行输出如清单 16 所示。

清单 16. 再次修改运行参数后清单 14 输出

[GC [DefNew: 10678K->178K(12288K), 0.0019448 secs] 10678K->178K(39616K), 
 0.0019851 secs] [Times: user=0.00 sys=0.00, real=0.03 secs] 
[GC [DefNew: 10751K->178K(12288K), 0.0010295 secs] 10751K->178K(39616K),
0.0010697 secs] [Times: user=0.00 sys=0.00, real=0.02 secs] 
[GC [DefNew: 10493K->178K(12288K), 0.0008301 secs] 10493K->178K(39616K),
0.0008672 secs] [Times: user=0.00 sys=0.00, real=0.02 secs] 
[GC [DefNew: 10467K->178K(12288K), 0.0008522 secs] 10467K->178K(39616K),
0.0008905 secs] [Times: user=0.00 sys=0.00, real=0.02 secs] 
[GC [DefNew: 10450K->178K(12288K), 0.0008964 secs] 10450K->178K(39616K),
0.0009339 secs] [Times: user=0.00 sys=0.00, real=0.01 secs] 
[GC [DefNew: 10439K->178K(12288K), 0.0009876 secs] 10439K->178K(39616K),
0.0010279 secs] [Times: user=0.00 sys=0.00, real=0.02 secs]

从清单 16 可以看出,此时堆空间的垃圾回收稳定在一个固定的范围。在一个稳定的堆中,堆空间大小始终不变,每次 GC 时,都要应对一个 40MB 的空间。因此,虽然 GC 次数减小了,但是单次 GC 速度不如一个震荡的堆。

5. 增大吞吐量提升系统性能

吞吐量优先的方案将会尽可能减少系统执行垃圾回收的总时间,故可以考虑关注系统吞吐量的并行回收收集器。在拥有高性能的计算机上,进行吞吐量优先优化,可以使用参数:

java –Xmx3800m –Xms3800m –Xmn2G –Xss128k –XX:+UseParallelGC 
   –XX:ParallelGC-Threads=20 –XX:+UseParallelOldGC

–Xmx380m –Xms3800m:设置 Java 堆的最大值和初始值。一般情况下,为了避免堆内存的频繁震荡,导致系统性能下降,我们的做法是设置最大堆等于最小堆。假设这里把最小堆减少为最大堆的一半,即 1900m,那么 JVM 会尽可能在 1900MB 堆空间中运行,如果这样,发生 GC 的可能性就会比较高;

-Xss128k:减少线程栈的大小,这样可以使剩余的系统内存支持更多的线程;

-Xmn2g:设置年轻代区域大小为 2GB;

–XX:+UseParallelGC:年轻代使用并行垃圾回收收集器。这是一个关注吞吐量的收集器,可以尽可能地减少 GC 时间。

–XX:ParallelGC-Threads:设置用于垃圾回收的线程数,通常情况下,可以设置和 CPU 数量相等。但在 CPU 数量比较多的情况下,设置相对较小的数值也是合理的;

–XX:+UseParallelOldGC:设置年老代使用并行回收收集器。

6. 尝试使用大的内存分页

CPU 是通过寻址来访问内存的。32 位 CPU 的寻址宽度是 0~0xFFFFFFFF ,计算后得到的大小是 4G,也就是说可支持的物理内存最大是 4G。但在实践过程中,碰到了这样的问题,程序需要使用 4G 内存,而可用物理内存小于 4G,导致程序不得不降低内存占用。为了解决此类问题,现代 CPU 引入了 MMU(Memory Management Unit 内存管理单元)。MMU 的核心思想是利用虚拟地址替代物理地址,即 CPU 寻址时使用虚址,由 MMU 负责将虚址映射为物理地址。MMU 的引入,解决了对物理内存的限制,对程序来说,就像自己在使用 4G 内存一样。内存分页 (Paging) 是在使用 MMU 的基础上,提出的一种内存管理机制。它将虚拟地址和物理地址按固定大小(4K)分割成页 (page) 和页帧 (page frame),并保证页与页帧的大小相同。这种机制,从数据结构上,保证了访问内存的高效,并使 OS 能支持非连续性的内存分配。在程序内存不够用时,还可以将不常用的物理内存页转移到其他存储设备上,比如磁盘,这就是大家耳熟能详的虚拟内存。

在 Solaris 系统中,JVM 可以支持 Large Page Size 的使用。使用大的内存分页可以增强 CPU 的内存寻址能力,从而提升系统的性能。

java –Xmx2506m –Xms2506m –Xmn1536m –Xss128k –XX:++UseParallelGC
 –XX:ParallelGCThreads=20 –XX:+UseParallelOldGC –XX:+LargePageSizeInBytes=256m

–XX:+LargePageSizeInBytes:设置大页的大小。

过大的内存分页会导致 JVM 在计算 Heap 内部分区(perm, new, old)内存占用比例时,会出现超出正常值的划分,最坏情况下某个区会多占用一个页的大小。

7. 使用非占有的垃圾回收器

为降低应用软件的垃圾回收时的停顿,首先考虑的是使用关注系统停顿的 CMS 回收器,其次,为了减少 Full GC 次数,应尽可能将对象预留在年轻代,因为年轻代 Minor GC 的成本远远小于年老代的 Full GC。

java –Xmx3550m –Xms3550m –Xmn2g –Xss128k –XX:ParallelGCThreads=20
 –XX:+UseConcMarkSweepGC –XX:+UseParNewGC –XX:+SurvivorRatio=8 –XX:TargetSurvivorRatio=90
 –XX:MaxTenuringThreshold=31

–XX:ParallelGCThreads=20:设置 20 个线程进行垃圾回收;

–XX:+UseParNewGC:年轻代使用并行回收器;

–XX:+UseConcMarkSweepGC:年老代使用 CMS 收集器降低停顿;

–XX:+SurvivorRatio:设置 Eden 区和 Survivor 区的比例为 8:1。稍大的 Survivor 空间可以提高在年轻代回收生命周期较短的对象的可能性,如果 Survivor 不够大,一些短命的对象可能直接进入年老代,这对系统来说是不利的。

–XX:TargetSurvivorRatio=90:设置 Survivor 区的可使用率。这里设置为 90%,则允许 90%的 Survivor 空间被使用。默认值是 50%。故该设置提高了 Survivor 区的使用率。当存放的对象超过这个百分比,则对象会向年老代压缩。因此,这个选项更有助于将对象留在年轻代。

–XX:MaxTenuringThreshold:设置年轻对象晋升到年老代的年龄。默认值是 15 次,即对象经过 15 次 Minor GC 依然存活,则进入年老代。这里设置为 31,目的是让对象尽可能地保存在年轻代区域。

8. 结束语

通过本文的学习,读者了解了如何将新对象预留在年轻代、如何让大对象进入年老代、如何设置对象进入年老代的年龄、稳定的 Java 堆 VS 动荡的 Java 堆、增大吞吐量提升系统性能、尝试使用大的内存分页、使用非占有的垃圾回收器等主题,通过实例及对应输出解释的形式让读者对于 JVM 优化有一个初步认识。如其他文章相同的观点,没有哪一条优化是固定不变的,读者需要自己判断、实践后才能找到正确的道路。

9. 相关主题

参考 首页,了解 IBM 开发者论坛对于 JVM 文章的收集。

参考博客 ,作者对于 JVM 内部结构进行了详细介绍。

参考文章 ,站在别人的经验之上学习。

参考论文 ,计算机学习必须看懂外国人的文章。

参考博客,作者对内存分页做了详尽解释。

:这里有数百篇关于 Java 编程各个方面的文章。

JVM 优化经验总结
《JVM 垃圾回收器工作原理及使用实例介绍》
JVM
JVM 基本结构
JVM 调优总结
JVM Performance Optimization
内存分页对性能的提升原理
developerWorks Java 技术专区