Java学习指南
  • Java 编程的逻辑
  • Java进阶
  • Java FrameWorks
  • 了解 USB Type-A,B,C 三大标准接口
  • 深入浅出DDD
  • 重构:改善既有代码的设计
  • 面试大纲
  • 云原生
    • 什么是无服务器(what is serverless)?
  • 博客
    • 深入分析Log4j 漏洞
  • 博客
    • Serverless之快速搭建Spring Boot应用
  • 博客
    • 使用 Prometheus + Grafana + Spring Boot Actuator 监控应用
  • 博客
    • 使用 Prometheus + Grafana 监控 MySQL
  • 博客
    • 使用Github Actions + Docker 部署Spring Boot应用
  • 博客
    • Redis分布式锁之Redisson的原理和实践
  • 博客
    • 数据库中的树结构应该怎样去设计
  • 学习&成长
    • 如何成为技术大牛
  • 开发工具
    • Git Commit Message Guidelines
  • 开发工具
    • git命名大全
  • 开发工具
    • Gradle vs Maven Comparison
  • 开发工具
    • Swagger2常用注解及其说明
  • 开发工具
    • 简明 VIM 练级攻略
  • 微服务
    • 十大微服务设计模式和原则
  • 微服务
    • 微服务下的身份认证和令牌管理
  • 微服务
    • 微服务坏味道之循环依赖
  • 设计模式
    • 设计模式 - JDK中的设计模式
  • 设计模式
    • 设计模式 - Java三种代理模式
  • 设计模式
    • 设计模式 - 六大设计原则
  • 设计模式
    • 设计模式 - 单例模式
  • 设计模式
    • 设计模式 - 命名模式
  • 设计模式
    • 设计模式 - 备忘录模式
  • 设计模式
    • 设计模式 - 概览
  • 设计模式
    • 设计模式 - 没用的设计模式
  • 质量&效率
    • Homebrew 替换国内镜像源
  • 质量&效率
    • 工作中如何做好技术积累
  • Java FrameWorks
    • Logback
      • 自定义 logback 日志过滤器
  • Java FrameWorks
    • Mybatis
      • MyBatis(十三) - 整合Spring
  • Java FrameWorks
    • Mybatis
      • MyBatis(十二) - 一些API
  • Java FrameWorks
    • Mybatis
      • Mybatis(一) - 概述
  • Java FrameWorks
    • Mybatis
      • Mybatis(七) - 结果集的封装与映射
  • Java FrameWorks
    • Mybatis
      • Mybatis(三) - mapper.xml及其加载机制
  • Java FrameWorks
    • Mybatis
      • Mybatis(九) - 事务
  • Java FrameWorks
    • Mybatis
      • Mybatis(二) - 全局配置文件及其加载机制
  • Java FrameWorks
    • Mybatis
      • Mybatis(五) - SqlSession执行流程
  • Java FrameWorks
    • Mybatis
      • Mybatis(八) - 缓存
  • Java FrameWorks
    • Mybatis
      • Mybatis(六) - 动态SQL的参数绑定与执行
  • Java FrameWorks
    • Mybatis
      • Mybatis(十) - 插件
  • Java FrameWorks
    • Mybatis
      • Mybatis(十一) - 日志
  • Java FrameWorks
    • Mybatis
      • Mybatis(四) - Mapper接口解析
  • Java FrameWorks
    • Netty
      • Netty 可靠性分析
  • Java FrameWorks
    • Netty
      • Netty - Netty 线程模型
  • Java FrameWorks
    • Netty
      • Netty堆外内存泄露排查盛宴
  • Java FrameWorks
    • Netty
      • Netty高级 - 高性能之道
  • Java FrameWorks
    • Shiro
      • Shiro + JWT + Spring Boot Restful 简易教程
  • Java FrameWorks
    • Shiro
      • 非常详尽的 Shiro 架构解析!
  • Java FrameWorks
    • Spring
      • Spring AOP 使用介绍,从前世到今生
  • Java FrameWorks
    • Spring
      • Spring AOP 源码解析
  • Java FrameWorks
    • Spring
      • Spring Event 实现原理
  • Java FrameWorks
    • Spring
      • Spring Events
  • Java FrameWorks
    • Spring
      • Spring IOC容器源码分析
  • Java FrameWorks
    • Spring
      • Spring Integration简介
  • Java FrameWorks
    • Spring
      • Spring MVC 框架中拦截器 Interceptor 的使用方法
  • Java FrameWorks
    • Spring
      • Spring bean 解析、注册、实例化流程源码剖析
  • Java FrameWorks
    • Spring
      • Spring validation中@NotNull、@NotEmpty、@NotBlank的区别
  • Java FrameWorks
    • Spring
      • Spring 如何解决循环依赖?
  • Java FrameWorks
    • Spring
      • Spring 异步实现原理与实战分享
  • Java FrameWorks
    • Spring
      • Spring中的“for update”问题
  • Java FrameWorks
    • Spring
      • Spring中的设计模式
  • Java FrameWorks
    • Spring
      • Spring事务失效的 8 大原因
  • Java FrameWorks
    • Spring
      • Spring事务管理详解
  • Java FrameWorks
    • Spring
      • Spring计时器StopWatch使用
  • Java FrameWorks
    • Spring
      • 详述 Spring MVC 框架中拦截器 Interceptor 的使用方法
  • Java FrameWorks
    • Spring
      • 透彻的掌握 Spring 中@transactional 的使用
  • Java
    • Java IO&NIO&AIO
      • Java IO - BIO 详解
  • Java
    • Java IO&NIO&AIO
      • Java NIO - IO多路复用详解
  • Java
    • Java IO&NIO&AIO
      • Java N(A)IO - Netty
  • Java
    • Java IO&NIO&AIO
      • Java IO - Unix IO模型
  • Java
    • Java IO&NIO&AIO
      • Java IO - 分类
  • Java
    • Java IO&NIO&AIO
      • Java NIO - 基础详解
  • Java
    • Java IO&NIO&AIO
      • Java IO - 常见类使用
  • Java
    • Java IO&NIO&AIO
      • Java AIO - 异步IO详解
  • Java
    • Java IO&NIO&AIO
      • Java IO概述
  • Java
    • Java IO&NIO&AIO
      • Java IO - 设计模式
  • Java
    • Java IO&NIO&AIO
      • Java NIO - 零拷贝实现
  • Java
    • Java JVM
      • JVM 优化经验总结
  • Java
    • Java JVM
      • JVM 内存结构
  • Java
    • Java JVM
      • JVM参数设置
  • Java
    • Java JVM
      • Java 内存模型
  • Java
    • Java JVM
      • 从实际案例聊聊Java应用的GC优化
  • Java
    • Java JVM
      • Java 垃圾回收器G1详解
  • Java
    • Java JVM
      • 垃圾回收器Shenandoah GC详解
  • Java
    • Java JVM
      • 垃圾回收器ZGC详解
  • Java
    • Java JVM
      • 垃圾回收基础
  • Java
    • Java JVM
      • 如何优化Java GC
  • Java
    • Java JVM
      • 类加载机制
  • Java
    • Java JVM
      • 类字节码详解
  • Java
    • Java 基础
      • Java hashCode() 和 equals()
  • Java
    • Java 基础
      • Java 基础 - Java native方法以及JNI实践
  • Java
    • Java 基础
      • Java serialVersionUID 有什么作用?
  • Java
    • Java 基础
      • Java 泛型的类型擦除
  • Java
    • Java 基础
      • Java 基础 - Unsafe类解析
  • Java
    • Java 基础
      • Difference Between Statement and PreparedStatement
  • Java
    • Java 基础
      • Java 基础 - SPI机制详解
  • Java
    • Java 基础
      • Java 基础 - final
  • Java
    • Java 基础
      • Java中static关键字详解
  • Java
    • Java 基础
      • 为什么说Java中只有值传递?
  • Java
    • Java 基础
      • Java 基础 - 即时编译器原理解析及实践
  • Java
    • Java 基础
      • Java 基础 - 反射
  • Java
    • Java 基础
      • Java多态的面试题
  • Java
    • Java 基础
      • Java 基础 - 异常机制详解
  • Java
    • Java 基础
      • 为什么要有抽象类?
  • Java
    • Java 基础
      • 接口的本质
  • Java
    • Java 基础
      • Java 基础 - 枚举
  • Java
    • Java 基础
      • Java 基础 - 泛型机制详解
  • Java
    • Java 基础
      • Java 基础 - 注解机制详解
  • Java
    • Java 基础
      • 为什么 String hashCode 方法选择数字31作为乘子
  • Java
    • Java 并发
      • Java 并发 - 14个Java并发容器
  • Java
    • Java 并发
      • Java 并发 - AQS
  • Java
    • Java 并发
      • Java 并发 - BlockingQueue
  • Java
    • Java 并发
      • Java 并发 - CAS
  • Java
    • Java 并发
      • Java 并发 - Condition接口
  • Java
    • Java 并发
      • Java 并发 - CopyOnWriteArrayList
  • Java
    • Java 并发
      • Java 并发 - CountDownLatch、CyclicBarrier和Phaser对比
  • Java
    • Java 并发
      • Java 并发 - Fork&Join框架
  • Java
    • Java 并发
      • Java 并发 - Java CompletableFuture 详解
  • Java
    • Java 并发
      • Java 并发 - Java 线程池
  • Java
    • Java 并发
      • Java 并发 - Lock接口
  • Java
    • Java 并发
      • Java 并发 - ReentrantLock
  • Java
    • Java 并发
      • Java 并发 - ReentrantReadWriteLock
  • Java
    • Java 并发
      • Java 并发 - Synchronized
  • Java
    • Java 并发
      • Java 并发 - ThreadLocal 内存泄漏问题
  • Java
    • Java 并发
      • Java 并发 - ThreadLocal
  • Java
    • Java 并发
      • Java 并发 - Volatile
  • Java
    • Java 并发
      • Java 并发 - 从ReentrantLock的实现看AQS的原理及应用
  • Java
    • Java 并发
      • Java 并发 - 公平锁和非公平锁
  • Java
    • Java 并发
      • Java 并发 - 内存模型
  • Java
    • Java 并发
      • Java 并发 - 原子类
  • Java
    • Java 并发
      • Java 并发 - 如何确保三个线程顺序执行?
  • Java
    • Java 并发
      • Java 并发 - 锁
  • Java
    • Java 的新特性
      • Java 10 新特性概述
  • Java
    • Java 的新特性
      • Java 11 新特性概述
  • Java
    • Java 的新特性
      • Java 12 新特性概述
  • Java
    • Java 的新特性
      • Java 13 新特性概述
  • Java
    • Java 的新特性
      • Java 14 新特性概述
  • Java
    • Java 的新特性
      • Java 15 新特性概述
  • Java
    • Java 的新特性
      • Java 8的新特性
  • Java
    • Java 的新特性
      • Java 9 新特性概述
  • Java
    • Java 调试排错
      • 调试排错 - Java Debug Interface(JDI)详解
  • Java
    • Java 调试排错
      • 调试排错 - CPU 100% 排查优化实践
  • Java
    • Java 调试排错
      • 调试排错 - Java Heap Dump分析
  • Java
    • Java 调试排错
      • 调试排错 - Java Thread Dump分析
  • Java
    • Java 调试排错
      • 调试排错 - Java动态调试技术原理
  • Java
    • Java 调试排错
      • 调试排错 - Java应用在线调试Arthas
  • Java
    • Java 调试排错
      • 调试排错 - Java问题排查:工具单
  • Java
    • Java 调试排错
      • 调试排错 - 内存溢出与内存泄漏
  • Java
    • Java 调试排错
      • 调试排错 - 在线分析GC日志的网站GCeasy
  • Java
    • Java 调试排错
      • 调试排错 - 常见的GC问题分析与解决
  • Java
    • Java 集合
      • Java 集合 - ArrayList
  • Java
    • Java 集合
      • Java 集合 - HashMap 和 ConcurrentHashMap
  • Java
    • Java 集合
      • Java 集合 - HashMap的死循环问题
  • Java
    • Java 集合
      • Java 集合 - LinkedHashSet&Map
  • Java
    • Java 集合
      • Java 集合 - LinkedList
  • Java
    • Java 集合
      • Java 集合 - PriorityQueue
  • Java
    • Java 集合
      • Java 集合 - Stack & Queue
  • Java
    • Java 集合
      • Java 集合 - TreeSet & TreeMap
  • Java
    • Java 集合
      • Java 集合 - WeakHashMap
  • Java
    • Java 集合
      • Java 集合 - 为什么HashMap的容量是2的幂次方
  • Java
    • Java 集合
      • Java 集合 - 概览
  • Java
    • Java 集合
      • Java 集合 - 高性能队列Disruptor详解
  • 分布式
    • RPC
      • ⭐️RPC - Dubbo&hsf&Spring cloud的区别
  • 分布式
    • RPC
      • ⭐️RPC - Dubbo的架构原理
  • 分布式
    • RPC
      • ⭐️RPC - HSF的原理分析
  • 分布式
    • RPC
      • ⭐️RPC - 你应该知道的RPC原理
  • 分布式
    • RPC
      • ⭐️RPC - 动态代理
  • 分布式
    • RPC
      • 深入理解 RPC 之协议篇
  • 分布式
    • RPC
      • RPC - 序列化和反序列化
  • 分布式
    • RPC
      • ⭐️RPC - 服务注册与发现
  • 分布式
    • RPC
      • RPC - 核心原理
  • 分布式
    • RPC
      • ⭐️RPC - 框架对比
  • 分布式
    • RPC
      • ⭐️RPC - 网络通信
  • 分布式
    • 分布式事务
      • 分布式事务 Seata TCC 模式深度解析
  • 分布式
    • 分布式事务
      • 分布式事务的实现原理
  • 分布式
    • 分布式事务
      • 常用的分布式事务解决方案
  • 分布式
    • 分布式事务
      • 手写实现基于消息队列的分布式事务框架
  • 分布式
    • 分布式算法
      • CAP 定理的含义
  • 分布式
    • 分布式算法
      • Paxos和Raft比较
  • 分布式
    • 分布式算法
      • 分布式一致性与共识算法
  • 分布式
    • 分布式锁
      • ⭐️分布式锁的原理及实现方式
  • 分布式
    • 搜索引擎
      • ElasticSearch与SpringBoot的集成与JPA方法的使用
  • 分布式
    • 搜索引擎
      • 全文搜索引擎 Elasticsearch 入门教程
  • 分布式
    • 搜索引擎
      • 十分钟学会使用 Elasticsearch 优雅搭建自己的搜索系统
  • 分布式
    • 搜索引擎
      • 腾讯万亿级 Elasticsearch 技术解密
  • 分布式
    • 日志系统
      • Grafana Loki 简明教程
  • 分布式
    • 日志系统
      • 分布式系统中如何优雅地追踪日志
  • 分布式
    • 日志系统
      • 如何优雅地记录操作日志?
  • 分布式
    • 日志系统
      • 日志收集组件—Flume、Logstash、Filebeat对比
  • 分布式
    • 日志系统
      • 集中式日志系统 ELK 协议栈详解
  • 分布式
    • 消息队列
      • 消息队列 - Kafka
  • 分布式
    • 消息队列
      • 消息队列 - Kafka、RabbitMQ、RocketMQ等消息中间件的对比
  • 分布式
    • 消息队列
      • 消息队列之 RabbitMQ
  • 分布式
    • 消息队列
      • 消息队列 - 使用docker-compose构建kafka集群
  • 分布式
    • 消息队列
      • 消息队列 - 分布式系统与消息的投递
  • 分布式
    • 消息队列
      • 消息队列 - 如何保证消息的可靠性传输
  • 分布式
    • 消息队列
      • 消息队列 - 如何保证消息的顺序性
  • 分布式
    • 消息队列
      • 消息队列 - 如何保证消息队列的高可用
  • 分布式
    • 消息队列
      • 消息队列 - 消息队列设计精要
  • 分布式
    • 监控系统
      • 深度剖析开源分布式监控CAT
  • 大数据
    • Flink
      • Flink架构与核心组件
  • 微服务
    • Dubbo
      • 基于dubbo的分布式应用中的统一异常处理
  • 微服务
    • Dubbo
      • Vim快捷键
  • 微服务
    • Service Mesh
      • Istio 是什么?
  • 微服务
    • Service Mesh
      • OCTO 2.0:美团基于Service Mesh的服务治理系统详解
  • 微服务
    • Service Mesh
      • Service Mesh是什么?
  • 微服务
    • Service Mesh
      • Spring Cloud向Service Mesh迁移
  • 微服务
    • Service Mesh
      • 数据挖掘算法
  • 微服务
    • Service Mesh
      • Seata Saga 模式
  • 微服务
    • Spring Cloud
      • Seata TCC 模式
  • 微服务
    • Spring Cloud
      • Spring Cloud Config
  • 微服务
    • Spring Cloud
      • Seata AT 模式
  • 微服务
    • Spring Cloud
      • Spring Cloud Gateway
  • 微服务
    • Spring Cloud
      • Spring Cloud OpenFeign 的核心原理
  • 微服务
    • Spring Cloud
      • Seata XA 模式
  • 数据库
    • Database Version Control
      • Liquibase vs. Flyway
  • 数据库
    • Database Version Control
      • Six reasons to version control your database
  • 数据库
    • MySQL
      • How Sharding Works
  • 数据库
    • MySQL
      • MySQL InnoDB中各种SQL语句加锁分析
  • 数据库
    • MySQL
      • MySQL 事务隔离级别和锁
  • 数据库
    • MySQL
      • MySQL 索引性能分析概要
  • 数据库
    • MySQL
      • MySQL 索引设计概要
  • 数据库
    • MySQL
      • MySQL出现Waiting for table metadata lock的原因以及解决方法
  • 数据库
    • MySQL
      • MySQL的Limit性能问题
  • 数据库
    • MySQL
      • MySQL索引优化explain
  • 数据库
    • MySQL
      • MySQL索引背后的数据结构及算法原理
  • 数据库
    • MySQL
      • MySQL行转列、列转行问题
  • 数据库
    • MySQL
      • 一条SQL更新语句是如何执行的?
  • 数据库
    • MySQL
      • 一条SQL查询语句是如何执行的?
  • 数据库
    • MySQL
      • 为什么 MySQL 使用 B+ 树
  • 数据库
    • MySQL
      • 为什么 MySQL 的自增主键不单调也不连续
  • 数据库
    • MySQL
      • 为什么我的MySQL会“抖”一下?
  • 数据库
    • MySQL
      • 为什么数据库不应该使用外键
  • 数据库
    • MySQL
      • 为什么数据库会丢失数据
  • 数据库
    • MySQL
      • 事务的可重复读的能力是怎么实现的?
  • 数据库
    • MySQL
      • 大众点评订单系统分库分表实践
  • 数据库
    • MySQL
      • 如何保证缓存与数据库双写时的数据一致性?
  • 数据库
    • MySQL
      • 浅谈数据库并发控制 - 锁和 MVCC
  • 数据库
    • MySQL
      • 深入浅出MySQL 中事务的实现
  • 数据库
    • MySQL
      • 浅入浅出MySQL 和 InnoDB
  • 数据库
    • PostgreSQL
      • PostgreSQL upsert功能(insert on conflict do)的用法
  • 数据库
    • Redis
      • Redis GEO & 实现原理深度分析
  • 数据库
    • Redis
      • Redis 和 I/O 多路复用
  • 数据库
    • Redis
      • Redis分布式锁
  • 数据库
    • Redis
      • Redis实现分布式锁中的“坑”
  • 数据库
    • Redis
      • Redis总结
  • 数据库
    • Redis
      • 史上最全Redis高可用技术解决方案大全
  • 数据库
    • Redis
      • Redlock:Redis分布式锁最牛逼的实现
  • 数据库
    • Redis
      • 为什么 Redis 选择单线程模型
  • 数据库
    • TiDB
      • 新一代数据库TiDB在美团的实践
  • 数据库
    • 数据仓库
      • 实时数仓在有赞的实践
  • 数据库
    • 数据库原理
      • OLTP与OLAP的关系是什么?
  • 数据库
    • 数据库原理
      • 为什么 OLAP 需要列式存储
  • 系统设计
    • DDD
      • Domain Primitive
  • 系统设计
    • DDD
      • Repository模式
  • 系统设计
    • DDD
      • 应用架构
  • 系统设计
    • DDD
      • 聊聊如何避免写流水账代码
  • 系统设计
    • DDD
      • 领域层设计规范
  • 系统设计
    • DDD
      • 从三明治到六边形
  • 系统设计
    • DDD
      • 阿里盒马领域驱动设计实践
  • 系统设计
    • DDD
      • 领域驱动设计(DDD)编码实践
  • 系统设计
    • DDD
      • 领域驱动设计在互联网业务开发中的实践
  • 系统设计
    • 基础架构
      • 容错,高可用和灾备
  • 系统设计
    • 数据聚合
      • GraphQL及元数据驱动架构在后端BFF中的实践
  • 系统设计
    • 数据聚合
      • 高效研发-闲鱼在数据聚合上的探索与实践
  • 系统设计
    • 服务安全
      • JSON Web Token 入门教程
  • 系统设计
    • 服务安全
      • 你还在用JWT做身份认证嘛?
  • 系统设计
    • 服务安全
      • 凭证(Credentials)
  • 系统设计
    • 服务安全
      • 授权(Authorization)
  • 系统设计
    • 服务安全
      • 理解OAuth2.0
  • 系统设计
    • 服务安全
      • 认证(Authentication)
  • 系统设计
    • 架构案例
      • 微信 Android 客户端架构演进之路
  • 系统设计
    • 高可用架构
      • 业务高可用的保障:异地多活架构
  • 计算机基础
    • 字符编码
      • Base64原理解析
  • 计算机基础
    • 字符编码
      • 字符编码笔记:ASCII,Unicode 和 UTF-8
  • 计算机基础
    • 操作系统
      • 为什么 CPU 访问硬盘很慢
  • 计算机基础
    • 操作系统
      • 为什么 HTTPS 需要 7 次握手以及 9 倍时延
  • 计算机基础
    • 操作系统
      • 为什么 Linux 默认页大小是 4KB
  • 计算机基础
    • 操作系统
      • 磁盘IO那些事
  • 计算机基础
    • 操作系统
      • 虚拟机的3种网络模式
  • 计算机基础
    • 服务器
      • mac终端bash、zsh、oh-my-zsh最实用教程
  • 计算机基础
    • 服务器
      • Nginx强制跳转Https
  • 计算机基础
    • 服务器
      • curl 的用法指南
  • 计算机基础
    • 网络安全
      • 如何设计一个安全的对外接口?
  • 计算机基础
    • 网络安全
      • 浅谈常见的七种加密算法及实现
  • 计算机基础
    • 网络编程
      • MQTT - The Standard for IoT Messaging
  • 计算机基础
    • 网络编程
      • 两万字长文 50+ 张趣图带你领悟网络编程的内功心法
  • 计算机基础
    • 网络编程
      • 为什么 TCP 协议有 TIME_WAIT 状态
  • 计算机基础
    • 网络编程
      • 为什么 TCP 协议有性能问题
  • 计算机基础
    • 网络编程
      • 为什么 TCP 协议有粘包问题
  • 计算机基础
    • 网络编程
      • 为什么 TCP 建立连接需要三次握手
  • 计算机基础
    • 网络编程
      • 为什么 TCP/IP 协议会拆分数据
  • 计算机基础
    • 网络编程
      • 使用 OAuth 2 和 JWT 为微服务提供安全保障
  • 计算机基础
    • 网络编程
      • 四种常见的 POST 提交数据方式
  • 计算机基础
    • 网络编程
      • 有赞TCP网络编程最佳实践
  • 计算机基础
    • 网络编程
      • 看完这篇HTTP,跟面试官扯皮就没问题了
  • 计算机基础
    • 网络编程
      • 详细解析 HTTP 与 HTTPS 的区别
  • 质量&效率
    • 快捷键
      • Idea快捷键(Mac版)
  • 质量&效率
    • 快捷键
      • Shell快捷键
  • 质量&效率
    • 快捷键
      • conduit
  • 质量&效率
    • 敏捷开发
      • Scrum的3种角色
  • 质量&效率
    • 敏捷开发
      • Scrum的4种会议
  • 质量&效率
    • 敏捷开发
      • ThoughtWorks的敏捷开发
  • 质量&效率
    • 敏捷开发
      • 敏捷开发入门教程
  • 运维&测试
    • Docker
      • Docker (容器) 的原理
  • 运维&测试
    • Docker
      • Docker Compose:链接外部容器的几种方式
  • 运维&测试
    • Docker
      • Docker 入门教程
  • 运维&测试
    • Docker
      • Docker 核心技术与实现原理
  • 运维&测试
    • Docker
      • Dockerfile 最佳实践
  • 运维&测试
    • Docker
      • Docker开启Remote API 访问 2375端口
  • 运维&测试
    • Docker
      • Watchtower - 自动更新 Docker 镜像与容器
  • 运维&测试
    • Kubernetes
      • Kubernetes 介绍
  • 运维&测试
    • Kubernetes
      • Kubernetes 在有赞的实践
  • 运维&测试
    • Kubernetes
      • Kubernetes 学习路径
  • 运维&测试
    • Kubernetes
      • Kubernetes如何改变美团的云基础设施?
  • 运维&测试
    • Kubernetes
      • Kubernetes的三种外部访问方式:NodePort、LoadBalancer 和 Ingress
  • 运维&测试
    • Kubernetes
      • 谈 Kubernetes 的架构设计与实现原理
  • 运维&测试
    • 压测
      • 全链路压测平台(Quake)在美团中的实践
  • 运维&测试
    • 测试
      • Cpress - JavaScript End to End Testing Framework
  • 运维&测试
    • 测试
      • 代码覆盖率-JaCoCo
  • 运维&测试
    • 测试
      • 浅谈代码覆盖率
  • 运维&测试
    • 测试
      • 测试中 Fakes、Mocks 以及 Stubs 概念明晰
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP中的Bean是如何被AOP代理的
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP原生动态代理和Cglib动态代理
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP实现方式(xml&注解)
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP是如何收集切面类并封装的
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP概述
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP的底层核心后置处理器
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP的延伸知识
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot - IOC(一)
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot - IOC(三)
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot - IOC(二)
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot - IOC(五)
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot - IOC(四) - 循环依赖与解决方案
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot - 启动引导
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot JarLauncher
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot Web Mvc 自动装配
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot 使用ApplicationListener监听器
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot 声明式事务
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot 嵌入式容器
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot引起的“堆外内存泄漏”排查及经验总结
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot的启动流程
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot自动化配置源码分析
  • Java FrameWorks
    • Spring
      • Spring Boot
        • 如何自定义Spring Boot Starter?
  • Java FrameWorks
    • Spring
      • Spring IOC
        • IOC - 模块装配和条件装配
  • Java FrameWorks
    • Spring
      • Spring IOC
        • IOC - 配置源(xml,注解)
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Environment
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring ApplicationContext
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring BeanDefinition
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring BeanFactory
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring BeanFactoryPostProcessor
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring BeanPostProcessor
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Bean的生命周期(一) - 概述
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Bean的生命周期(三) - 实例化阶段
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Bean的生命周期(二) - BeanDefinition
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Bean的生命周期(五) - 销毁阶段
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Bean的生命周期(四) - 初始化阶段
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring ComponentScan
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Events
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring IOC 基础篇
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring IOC 总结
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring IOC 进阶篇
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring IOC容器的生命周期
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Resource
  • Java FrameWorks
    • Spring
      • Spring MVC
        • DispatcherServlet的初始化原理
  • Java FrameWorks
    • Spring
      • Spring MVC
        • DispatcherServlet的核心工作原理
  • Java FrameWorks
    • Spring
      • Spring MVC
        • WebMvc的架构设计与组件功能解析
  • Java FrameWorks
    • Spring
      • Spring Security
        • Spring Boot 2 + Spring Security 5 + JWT 的单页应用 Restful 解决方案
  • Java FrameWorks
    • Spring
      • Spring Security
        • Spring Security Oauth
  • Java FrameWorks
    • Spring
      • Spring Security
        • Spring Security
  • Java FrameWorks
    • Spring
      • Spring WebFlux
        • DispatcherHandler的工作原理(传统方式)
  • Java FrameWorks
    • Spring
      • Spring WebFlux
        • DispatcherHandler的工作原理(函数式端点)
  • Java FrameWorks
    • Spring
      • Spring WebFlux
        • WebFlux的自动装配
  • Java FrameWorks
    • Spring
      • Spring WebFlux
        • 快速了解响应式编程与Reactive
  • Java FrameWorks
    • Spring
      • Spring WebFlux
        • 快速使用WebFlux
  • 分布式
    • 协调服务
      • Zookeeper
        • Zookeeper - 客户端之 Curator
  • 分布式
    • 协调服务
      • Zookeeper
        • 详解分布式协调服务 ZooKeeper
  • 分布式
    • 协调服务
      • etcd
        • 高可用分布式存储 etcd 的实现原理
  • 数据库
    • Database Version Control
      • Flyway
        • Database Migrations with Flyway
  • 数据库
    • Database Version Control
      • Flyway
        • How Flyway works
  • 数据库
    • Database Version Control
      • Flyway
        • Rolling Back Migrations with Flyway
  • 数据库
    • Database Version Control
      • Flyway
        • The meaning of the concept of checksums
  • 数据库
    • Database Version Control
      • Liquibase
        • Introduction to Liquibase Rollback
  • 数据库
    • Database Version Control
      • Liquibase
        • LiquiBase中文学习指南
  • 数据库
    • Database Version Control
      • Liquibase
        • Use Liquibase to Safely Evolve Your Database Schema
  • 系统设计
    • 流量控制
      • RateLimiter
        • Guava Rate Limiter实现分析
  • 系统设计
    • 流量控制
      • Sentinel
        • Sentinel 与 Hystrix 的对比
  • 系统设计
    • 流量控制
      • Sentinel
        • Sentinel工作主流程
  • 系统设计
    • 流量控制
      • 算法
        • 分布式服务限流实战
  • 系统设计
    • 解决方案
      • 秒杀系统
        • 如何设计一个秒杀系统
  • 系统设计
    • 解决方案
      • 红包系统
        • 微信高并发资金交易系统设计方案--百亿红包背后的技术支撑
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • 什么是预排序遍历树算法(MPTT,Modified Preorder Tree Traversal)
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • 加密算法
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • 推荐系统算法
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • linkerd
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • 查找算法
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • 缓存淘汰算法中的LRU和LFU
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • 负载均衡算法
  • 计算机基础
    • 数据结构与算法
      • 分布式算法
        • 分布式算法 - Paxos算法
  • 计算机基础
    • 数据结构与算法
      • 分布式算法
        • 分布式算法 - Raft算法
  • 计算机基础
    • 数据结构与算法
      • 分布式算法
        • 分布式算法 - Snowflake算法
  • 计算机基础
    • 数据结构与算法
      • 分布式算法
        • 分布式算法 - ZAB算法
  • 计算机基础
    • 数据结构与算法
      • 分布式算法
        • 分布式算法 - 一致性Hash算法
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - Bitmap & Bloom Filter
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - Map & Reduce
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - Trie树/数据库/倒排索引
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - 分治/hash/排序
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - 双层桶划分
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - 外(磁盘文件)排序
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - 布隆过滤器
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理算法
  • 计算机基础
    • 数据结构与算法
      • 字符串匹配算法
        • 字符串匹配 - 文本预处理:后缀树(Suffix Tree)
  • 计算机基础
    • 数据结构与算法
      • 字符串匹配算法
        • 字符串匹配 - 模式预处理:BM 算法 (Boyer-Moore)
  • 计算机基础
    • 数据结构与算法
      • 字符串匹配算法
        • 字符串匹配 - 模式预处理:KMP 算法(Knuth-Morris-Pratt)
  • 计算机基础
    • 数据结构与算法
      • 字符串匹配算法
        • 字符串匹配 - 模式预处理:朴素算法(Naive)(暴力破解)
  • 计算机基础
    • 数据结构与算法
      • 字符串匹配算法
        • 字符串匹配
  • 计算机基础
    • 数据结构与算法
      • 常用算法
        • 分支限界算法
  • 计算机基础
    • 数据结构与算法
      • 常用算法
        • 分治算法
  • 计算机基础
    • 数据结构与算法
      • 常用算法
        • 动态规划算法
  • 计算机基础
    • 数据结构与算法
      • 常用算法
        • 回溯算法
  • 计算机基础
    • 数据结构与算法
      • 常用算法
        • 贪心算法
  • 计算机基础
    • 数据结构与算法
      • 排序算法
        • 十大排序算法
  • 计算机基础
    • 数据结构与算法
      • 排序算法
        • 图解排序算法(一)之3种简单排序(选择,冒泡,直接插入)
  • 计算机基础
    • 数据结构与算法
      • 排序算法
        • 图解排序算法(三)之堆排序
  • 计算机基础
    • 数据结构与算法
      • 排序算法
        • 图解排序算法(二)之希尔排序
  • 计算机基础
    • 数据结构与算法
      • 排序算法
        • 图解排序算法(四)之归并排序
  • 计算机基础
    • 数据结构与算法
      • 数据结构
        • 树的高度和深度
  • 计算机基础
    • 数据结构与算法
      • 数据结构
        • 红黑树深入剖析及Java实现
  • 计算机基础
    • 数据结构与算法
      • 数据结构
        • 线性结构 - Hash
  • 计算机基础
    • 数据结构与算法
      • 数据结构
        • 线性结构 - 数组、链表、栈、队列
  • 计算机基础
    • 数据结构与算法
      • 数据结构
        • 逻辑结构 - 树
  • 运维&测试
    • 测试
      • Spock
        • Groovy 简明教程
  • 运维&测试
    • 测试
      • Spock
        • Spock 官方文档
  • 运维&测试
    • 测试
      • Spock
        • Spock单元测试框架介绍以及在美团优选的实践
  • 运维&测试
    • 测试
      • TDD
        • TDD 实践 - FizzFuzzWhizz(一)
  • 运维&测试
    • 测试
      • TDD
        • TDD 实践 - FizzFuzzWhizz(三)
  • 运维&测试
    • 测试
      • TDD
        • TDD 实践 - FizzFuzzWhizz(二)
  • 运维&测试
    • 测试
      • TDD
        • 测试驱动开发(TDD)- 原理篇
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Nacos
          • Nacos 服务注册的原理
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Nacos
          • Nacos 配置中心原理分析
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Seata
          • 服务调用过程
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Seata
          • Spring Cloud Bus
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Seata
          • Spring Cloud Consul
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Seata
          • Spring Cloud Stream
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Sentinel
          • Sentinel 与 Hystrix 的对比
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Sentinel
          • Sentinel
  • 微服务
    • Spring Cloud
      • Spring Cloud Netflix
        • Hystrix
          • How Hystrix Works
  • 微服务
    • Spring Cloud
      • Spring Cloud Netflix
        • Hystrix
          • Hystrix
  • 微服务
    • Spring Cloud
      • Spring Cloud Netflix
        • Hystrix
          • Hystrix原理与实战
  • 微服务
    • Spring Cloud
      • Spring Cloud Netflix
        • Hystrix
          • Spring Cloud Hystrix基本原理
由 GitBook 提供支持
在本页
  • 1. Environment概述
  • 1.1 第一感觉
  • 1.2 官方文档
  • 1.3 小册一家之言
  • 1.4 javadoc中的描述
  • 1.5 总结
  • 2. Environment的结构
  • 2.1 PropertyResolver
  • 2.2 ConfigurableEnvironment
  • 2.3 StandardEnvironment
  • 3. Environment的基本使用
  • 3.1 获得Environment的API
  • 3.2 使用Environment获取配置属性的值
  • 4. Environment深入探讨
  • 4.1 Environment的默认profiles
  • 4.2 Environment解析properties的底层

这有帮助吗?

  1. Java FrameWorks
  2. Spring
  3. Spring IOC

Spring Environment

上一页Spring IOC下一页Java FrameWorks

最后更新于2年前

这有帮助吗?

1. Environment概述

先对 Environment 有一个大体的认识吧。Environment 是从 SpringFramework 3.1 开始引入的一个抽象模型,至于抽象模型,和具体的理解,我想小伙伴们可以先自行思索一下。

1.1 第一感觉

其实第一眼看到这个名词,我们就应该有一个模糊的猜想了,它应该是基于 SpringFramework 的工程的运行时环境。所以我们可以这样看待我们编写的基于 SpringFramework 的应用程序:

img

这个理解是否正确呢?我们可以去官方文档加以验证。

1.2 官方文档

当我们去翻 SpringFramework 的官方文档时,会发现官方是这样概述 Environment 的:

The Environment interface is an abstraction integrated in the container that models two key aspects of the application environment: profiles and properties. A profile is a named, logical group of bean definitions to be registered with the container only if the given profile is active. Beans may be assigned to a profile whether defined in XML or with annotations. The role of the Environment object with relation to profiles is in determining which profiles (if any) are currently active, and which profiles (if any) should be active by default . Properties play an important role in almost all applications and may originate from a variety of sources: properties files, JVM system properties, system environment variables, JNDI, servlet context parameters, ad-hoc Properties objects, Map objects, and so on. The role of the Environment object with relation to properties is to provide the user with a convenient service interface for configuring property sources and resolving properties from them.

Environment 接口是集成在容器中的抽象,可对应用程序环境的两个关键方面进行建模:Profile 和 properties 。 Profiles 是仅在指定 profile 处于活动状态( active )时才向容器注册 BeanDefinition 的命名逻辑组。它可以将 Bean 分配给不同的 profile (无论是以 XML 定义还是注解配置)。与配置文件相关的 Environment 作用是确定哪些配置文件当前处于活动状态,以及哪些配置文件在默认情况下应处于活动状态。 Properties 在几乎所有应用程序中都起着重要作用,并且可能源自多种来源:属性文件,JVM 系统属性,系统环境变量,JNDI,ServletContext 参数,临时属性对象,Map 对象等。Environment 与属性相关联的作用是为用户提供方便的接口,它可以用于配置属性源,并从 Environment 中解析属性。

讲道理这段话理解起来不是那么容易,不过第一句【Environment 是集成在容器中的抽象】,会让我们产生一种感觉:前面的理解是不是出现了一些偏差?如果按照官方文档的说法,Environment 与工程的结构应该是这样才对:

到底是不是这样呢,根据个人的理解不同,表达出来的也会不太一样。

1.3 小册一家之言

作者个人是倾向于如下的结构理解,这样解释起来会相对更合理一些:

  • 首先,Environment 中包含 profiles 和 properties ,这些配置信息会影响 IOC 容器中的 bean 的注册与创建;

  • 其次,Environment 的创建是在 ApplicationContext 创建后才创建的( IOC 原理部分会解释),所以 Environment 应该是伴随着 ApplicationContext 的存在而存在;

  • 第三,ApplicationContext 中同时包含 Environment 和组件 bean ,而且从 BeanFactory 的视角来看,Environment 也是一个 Bean ,只不过它的地位比较特殊。

基于这三点,Environment 与工程的结构应该是下图这样的:

理解了两者的结构及关系,再来回头看看 Environment 的组成部分:profiles 和 properties ,咱之前也都了解过了,所以 Environment 的整体理解也就相对没有那么难了吧!

1.4 javadoc中的描述

上面并没有引用 Environment 的 javadoc 来阐述 Environment 的概念和定义,原因是 javadoc 并没有对 Application 和 Environment 之间的关系进行描述,所以小册选择在这里再贴出。

由于 javadoc 的篇幅太长,咱们拆解开来看。

1.4.1 Environment包含profile与properties

nterface representing the environment in which the current application is running. Models two key aspects of the application environment: profiles and properties. Methods related to property access are exposed via the PropertyResolver superinterface.

Environment 是表示当前应用程序正在其中运行的环境的接口。它为应用环境制定了两个关键的方面:profile 和 properties。与属性访问有关的方法通过 PropertyResolver 这个父接口公开。

这一段也是总体的概括 Environment 的基本设计和作用,不过它又提到了 PropertyResolver 这个接口,这个接口负责解析占位符( ${...} )对应的值,作用也比较容易理解,这里就不多展开解释啦。

1.4.2 profile用于区分不同的环境模式

A profile is a named, logical group of bean definitions to be registered with the container only if the given profile is active. Beans may be assigned to a profile whether defined in XML or via annotations; see the spring-beans 3.1 schema or the @Profile annotation for syntax details. The role of the Environment object with relation to profiles is in determining which profiles (if any) are currently active, and which profiles (if any) should be active by default. profile 机制保证了仅在给定 profile 处于激活状态时,才向容器注册的 BeanDefinition 的命名逻辑组。无论是用 XML 定义还是通过注解定义,都可以将 Bean 分配给指定的 profile。有关语法的详细信息,请参见 spring-beans 3.1规范文档 或 @Profile 注解。Environment 的作用是决定当前哪些配置文件(如果有)处于活动状态,以及默认情况下哪些配置文件(如果有)应处于活动状态。

通过前面的学习,这段文档注释也就不难理解了吧。Environment 配合 profile 可以完成指定模式的环境的组件装配,以及不同的配置属性注入。

1.4.3 properties用于配置属性和注入值

Properties play an important role in almost all applications, and may originate from a variety of sources: properties files, JVM system properties, system environment variables, JNDI, servlet context parameters, ad-hoc Properties objects, Maps, and so on. The role of the environment object with relation to properties is to provide the user with a convenient service interface for configuring property sources and resolving properties from them. Properties 在几乎所有应用程序中都起着重要作用,并且可能来源自多种途径:属性文件,JVM 系统属性,系统环境变量,JNDI,ServletContext 参数,临时属性对象,Map等。Environment 与 Properties 的关系是为用户提供方便的服务接口,以配置属性源,并从中解析属性值。

上一章的配置元信息中我们已经知道 properties 的最大作用之一是做外部化配置,Environment 中存放了很多 properties ,它们的来源有很多种,而最终的作用都是提供了属性配置,或者给组件注入属性值。

1.4.4 Environment不建议直接使用

Beans managed within an ApplicationContext may register to be EnvironmentAware or @Inject the Environment in order to query profile state or resolve properties directly. In most cases, however, application-level beans should not need to interact with the Environment directly but instead may have to have ${...} property values replaced by a property placeholder configurer such as PropertySourcesPlaceholderConfigurer, which itself is EnvironmentAware and as of Spring 3.1 is registered by default when using <context:property-placeholder/>.

在 ApplicationContext 中管理的 Bean 可以注册为 EnvironmentAware 或使用 @Inject 标注在 Environment 上,以便直接查询 profile 的状态或解析 Properties。 但是,在大多数情况下,应用程序级 Bean 不必直接与 Environment 交互,而是通过将 ${...} 属性值替换为属性占位符配置器进行属性注入(例如 PropertySourcesPlaceholderConfigurer),该属性本身是 EnvironmentAware,当配置了 <context:property-placeholder/> 时,默认情况下会使用 Spring 3.1 的规范注册。

这一段的描述主要讲了两件事情:Environment 可以注入到组件中,用于获取当前环境激活的所有 profile 模式;但是又不推荐开发者直接使用它,而是通过占位符注入配置属性的值。为什么会这么说呢,其实这个又要说回 Environment 设计的原始意图。Environment 的设计本身就应该是一个不被应用程序接触到的 “环境” ,我们只能从环境中获取一些它已经有的信息,但不应该获取它本身。所以,在处理 properties 的获取时,直接使用占位符就可以获取了。

1.4.5 ApplicationContext获取到的是ConfigurableEnvironment

Configuration of the environment object must be done through the ConfigurableEnvironment interface, returned from all AbstractApplicationContext subclass getEnvironment() methods. See ConfigurableEnvironment Javadoc for usage examples demonstrating manipulation of property sources prior to application context refresh() .

必须通过从所有 AbstractApplicationContext 子类的 getEnvironment() 方法返回的 ConfigurableEnvironment 接口完成环境对象的配置。请参阅 ConfigurableEnvironment 的 javadoc 以获取使用示例,这些示例演示在应用程序上下文 refresh() 方法被调用之前对属性源进行的操作。

注意这里,ApplicationContext 的根实现类 AbstractApplicationContext 获取到的是 ConfigurableEnvironment ,它具有 “可写” 的特征,换言之我们可以修改它内部的属性值 / 数据。不过话又说回来,通常情况下我们都不会直接改它,除非要对 SpringFramework 应用的启动流程或者运行中进行一些额外的扩展或者修改。

到这里,整个 javadoc 也就读完了,最后总结一下吧,这部分最终还是要理解,并且最好用自己的话概括出来。

1.5 总结

**Environment** 是 SpringFramework 3.1 引入的抽象的概念,它包含 profiles 和 properties 的信息,可以实现统一的配置存储和注入、配置属性的解析等。其中 profiles 实现了一种基于模式的环境配置,properties 则应用于外部化配置。

2. Environment的结构

了解了概念和设计的思想,下面咱来看看 Environment 在 SpringFramework 中设计的结构。

借助 IDEA ,可以看到 Environment 的上下级继承和派生关系:

这里面的几个重要的接口和类关注一下。

2.1 PropertyResolver

这个接口,只从接口名就知道它应该是处理占位符 ${} 的。观察接口的方法定义,直接实锤了它就是做配置属性值的获取和解析的:(下面是 PropertyResolver 的部分方法定义)

public interface PropertyResolver {

    // 检查所有的配置属性中是否包含指定key
    boolean containsProperty(String key);

    // 以String的形式返回指定的配置属性的值
    String getProperty(String key);

    // 带默认值的获取
    String getProperty(String key, String defaultValue);

    // 指定返回类型的配置属性值获取
    <T> T getProperty(String key, Class<T> targetType);

    // ......

    // 解析占位符
    String resolvePlaceholders(String text);

    // ......
}

所以由此也就证明了:**Environment** 可以获取配置元信息,同时也可以解析占位符的信息。

2.2 ConfigurableEnvironment

老套路了,看到 Configurable 开头,立马应该想到它又扩展了什么 set 方法吧!果然,可以从接口的方法定义中看到这样的方法名:setActiveProfiles 、addActiveProfile 。。。好了不用说了,这个接口一定可以用编程式设置 profile !

除此之外,这个接口中还有一个方法比较值得注意:

MutablePropertySources getPropertySources();

看方法名可以知道它会返回所有的 PropertySource 对象,可是 MutablePropertySources 是个什么鬼呢?点开它的源码,发现它的内部就是一个 List :

public class MutablePropertySources implements PropertySources {
	private final List<PropertySource<?>> propertySourceList = new CopyOnWriteArrayList<>();
}

由此可以总结出一个小小的结论:Mutable 开头的类名,通常可能是一个类型的 List 组合封装。

2.3 StandardEnvironment

它是 SpringFramework 中默认使用的标准运行时环境的抽象实现,不过它里面的方法实现的非常少,基本都是由 AbstractEnvironment 负责实现。在后面的原理部分,我们还会再见到它的,这里先留意一下就好。

3. Environment的基本使用

虽说 Environment 不建议直接在应用程序中使用,但是部分场景下还是需要直接接触它来操纵。本节小册不会直接介绍 Environment 的实际使用,而是先带小伙伴用最简单的方式用一用,体会一下 Environment 的作用即可。

3.1 获得Environment的API

既然 Environment 存在于 ApplicationContext 中,那么获取 Environment 的方式自然也就可以想到:@Autowired 就可以吧!下面咱来实际操作一下。

任意编写一个 Bean ,并声明注入 Environment :

@Component
public class EnvironmentHolder {
    
    @Autowired
    Environment environment;
    
    public void printEnvironment() {
        System.out.println(environment);
    }
}

之后直接使用包扫描的方式,驱动 AnnotationConfigApplicationContext ,就可以取到刚写的这个 EnvironmentHolder 了:

public class EnvironmentQuickstartApplication {
    
    public static void main(String[] args) throws Exception {
        AnnotationConfigApplicationContext ctx = new AnnotationConfigApplicationContext(
                "com.linkedbear.spring.environment.a_quickstart.bean");
        EnvironmentHolder environmentHolder = ctx.getBean(EnvironmentHolder.class);
        environmentHolder.printEnvironment();
    }
}

运行 main 方法,控制台会打印出 Environment 的对象信息:

StandardEnvironment {activeProfiles=[], defaultProfiles=[default], propertySources=[PropertiesPropertySource {name='systemProperties'}, SystemEnvironmentPropertySource {name='systemEnvironment'}]}

除此之外,联想到 BeanFactory 、ApplicationContext 的注入方式还有回调注入,作为 SpringFramework 的内置 API ,估计也会有一个 Aware 回调注入的接口吧!那自然是必须的,EnvironmentAware 就是回调注入的接口,小伙伴们可以自行实现操作一下,小册这里就不示范了(实在是简单的一批)。

注:使用 @Autowired 的方式在某些情况下会注入失败,所以对于小伙伴们而言,注入是否能成功需要亲手测试运行检验才能知道。在后面的后置处理器部分,会演示一种无法使用 @Autowired 注入 Environment 的方式,小伙伴们到时候可以留意一下。

3.2 使用Environment获取配置属性的值

既然上面已经获取到 Environment 了,那操作 Environment 的方法自然也就不是问题了。

为了方便获取 properties 的配置信息,这里编写一个配置类,把上一章 PropertySource 的 jdbc.properties 加载进去:

@Configuration
@ComponentScan("com.linkedbear.spring.environment.b_api.bean")
@PropertySource("propertysource/jdbc.properties")
public class EnvironmentPropertyConfiguration {
    
}

之后使用该配置类驱动 IOC 容器即可。

EnvironmentHolder 中,这次我们取一下默认的 profiles ,以及 jdbc.properties 中的配置属性值:

@Component
public class EnvironmentHolder {
    
    @Autowired
    Environment environment;
    
    public void printEnvironment() {
        System.out.println(Arrays.toString(environment.getDefaultProfiles()));
        System.out.println(environment.getProperty("jdbc.url"));
    }
}

重新驱动 IOC 容器,并取出 EnvironmentHolder 执行 printEnvironment 方法,控制台打印如下信息:

[default]
jdbc:mysql://localhost:3306/test

至此,Environment 的功能已正常使用。

Environment 中其他的 API ,小伙伴都可以自己动手使用一下,小册就不展开举例了。下面我们来向更深层次研究几个问题。

4. Environment深入探讨

先注意一下上面控制台打印的默认 profiles ,发现它有一个默认值是 default ,它是从哪来的呢?我们又没声明呀!

4.1 Environment的默认profiles

想知道 profiles 的默认配置,就要进入到 Environment 的抽象实现 AbstractEnvironment 中了:

@Override
public String[] getDefaultProfiles() {
    return StringUtils.toStringArray(doGetDefaultProfiles());
}

看,这里有一个很有意思的操作:getDefaultProfiles 调用了 doGetDefaultProfiles 方法,这个设计在 SpringFramework 中大量出现和使用!

4.1.1 SpringFramework中的方法命名规范

在 SpringFramework 的框架编码中,如果有出现一个方法是 do 开头,并且去掉 do 后能找到一个与剩余名称一样的方法,则代表如下含义:不带 do 开头的方法一般负责前置校验处理、返回结果封装,带 do 开头的方法是真正执行逻辑的方法(如 **getBean** 方法的底层会调用 **doGetBean** 来真正的寻找 IOC 容器的 bean ,**createBean** 会调用 **doCreateBean** 来真正的创建一个 bean )。

4.1.2 doGetDefaultProfiles的实现

public static final String DEFAULT_PROFILES_PROPERTY_NAME = "spring.profiles.default";

protected Set<String> doGetDefaultProfiles() {
    synchronized (this.defaultProfiles) {
        // 取框架默认的profiles,并与当前的对比
        if (this.defaultProfiles.equals(getReservedDefaultProfiles())) {
            // 如果一致,则尝试从Environment中获取显式声明的profiles
            String profiles = getProperty(DEFAULT_PROFILES_PROPERTY_NAME);
            // 如果有显式声明,则覆盖原有的默认值
            if (StringUtils.hasText(profiles)) {
                setDefaultProfiles(StringUtils.commaDelimitedListToStringArray(
                        StringUtils.trimAllWhitespace(profiles)));
            }
        }
        return this.defaultProfiles;
    }
}

看这个方法的实现,整体逻辑也不算复杂,关键是看它取框架默认的 profiles ,它其实就是取的 AbstractEnvironment 中内置的常量:

protected static final String RESERVED_DEFAULT_PROFILE_NAME = "default";

protected Set<String> getReservedDefaultProfiles() {
    return Collections.singleton(RESERVED_DEFAULT_PROFILE_NAME);
}

由此,可知默认的 default 来源。

4.1.3 覆盖默认的profiles方法

上面的源码中,也可以看到,我们可以通过声明 **spring.profiles.default** 的配置,来覆盖 SpringFramework 中原有的默认 profiles ,一个比较常用的方法是在 jvm 的启动参数上添加:

在 IDEA 的启动配置中,声明 VM options 就可以指定默认的 profiles 了。

同理,指定激活的 profiles 也可以像这样指定,只不过它的参数名称为 **spring.profiles.active** 。

4.2 Environment解析properties的底层

前面看 Environment 的结构,我们已经知道 Environment 继承了父接口 PropertyResolver ,自然它拥有解析配置元信息的能力,它的底层是如何实现的呢?是 Environment 自己干活,还是...有其人?

4.2.1 PropertyResolver的实现类

借助 IDE ,翻看 PropertyResolver 的子接口和实现类,发现仅仅就这么几个而已:

自然地,我们要去找 Environment 的实现类,StandardEnvironment ,看它是如何解析配置属性值的。

4.2.2 getProperty的实现是委派

翻看 StandardEnvironment ,发现 getProperty 方法并没有在此实现,而是父类 AbstractEnvironment 中,但是实现类中发现它是直接调用了自身组合的一个 ConfigurablePropertyResolver 来处理:

private final ConfigurablePropertyResolver propertyResolver =
        new PropertySourcesPropertyResolver(this.propertySources);

@Override
@Nullable
public String getProperty(String key) {
    return this.propertyResolver.getProperty(key);
}

一般的,我们称这种方式叫做 “委派” ,它与代理、装饰者不同:委派仅仅是将方法的执行转移给另一个对象,而代理可能会在此做额外的处理,装饰者也会在方法执行前后做增强。

继续往里看,就要进入 PropertySourcesPropertyResolver 的底层来研究了,小册认为再往里研究的性价比相对就不高了:这里面的解析逻辑相对复杂,但搞明白后的收益并不大,综合来看不太适合再深入研究。小伙伴们只需要了解 Environment 的解析配置属性值的底层是交给 PropertySourcesPropertyResolver 来处理就好啦。

img
img
img
img
img
Environment Abstraction