Java学习指南
  • Java 编程的逻辑
  • Java进阶
  • Java FrameWorks
  • 了解 USB Type-A,B,C 三大标准接口
  • 深入浅出DDD
  • 重构:改善既有代码的设计
  • 面试大纲
  • 云原生
    • 什么是无服务器(what is serverless)?
  • 博客
    • 深入分析Log4j 漏洞
  • 博客
    • Serverless之快速搭建Spring Boot应用
  • 博客
    • 使用 Prometheus + Grafana + Spring Boot Actuator 监控应用
  • 博客
    • 使用 Prometheus + Grafana 监控 MySQL
  • 博客
    • 使用Github Actions + Docker 部署Spring Boot应用
  • 博客
    • Redis分布式锁之Redisson的原理和实践
  • 博客
    • 数据库中的树结构应该怎样去设计
  • 学习&成长
    • 如何成为技术大牛
  • 开发工具
    • Git Commit Message Guidelines
  • 开发工具
    • git命名大全
  • 开发工具
    • Gradle vs Maven Comparison
  • 开发工具
    • Swagger2常用注解及其说明
  • 开发工具
    • 简明 VIM 练级攻略
  • 微服务
    • 十大微服务设计模式和原则
  • 微服务
    • 微服务下的身份认证和令牌管理
  • 微服务
    • 微服务坏味道之循环依赖
  • 设计模式
    • 设计模式 - JDK中的设计模式
  • 设计模式
    • 设计模式 - Java三种代理模式
  • 设计模式
    • 设计模式 - 六大设计原则
  • 设计模式
    • 设计模式 - 单例模式
  • 设计模式
    • 设计模式 - 命名模式
  • 设计模式
    • 设计模式 - 备忘录模式
  • 设计模式
    • 设计模式 - 概览
  • 设计模式
    • 设计模式 - 没用的设计模式
  • 质量&效率
    • Homebrew 替换国内镜像源
  • 质量&效率
    • 工作中如何做好技术积累
  • Java FrameWorks
    • Logback
      • 自定义 logback 日志过滤器
  • Java FrameWorks
    • Mybatis
      • MyBatis(十三) - 整合Spring
  • Java FrameWorks
    • Mybatis
      • MyBatis(十二) - 一些API
  • Java FrameWorks
    • Mybatis
      • Mybatis(一) - 概述
  • Java FrameWorks
    • Mybatis
      • Mybatis(七) - 结果集的封装与映射
  • Java FrameWorks
    • Mybatis
      • Mybatis(三) - mapper.xml及其加载机制
  • Java FrameWorks
    • Mybatis
      • Mybatis(九) - 事务
  • Java FrameWorks
    • Mybatis
      • Mybatis(二) - 全局配置文件及其加载机制
  • Java FrameWorks
    • Mybatis
      • Mybatis(五) - SqlSession执行流程
  • Java FrameWorks
    • Mybatis
      • Mybatis(八) - 缓存
  • Java FrameWorks
    • Mybatis
      • Mybatis(六) - 动态SQL的参数绑定与执行
  • Java FrameWorks
    • Mybatis
      • Mybatis(十) - 插件
  • Java FrameWorks
    • Mybatis
      • Mybatis(十一) - 日志
  • Java FrameWorks
    • Mybatis
      • Mybatis(四) - Mapper接口解析
  • Java FrameWorks
    • Netty
      • Netty 可靠性分析
  • Java FrameWorks
    • Netty
      • Netty - Netty 线程模型
  • Java FrameWorks
    • Netty
      • Netty堆外内存泄露排查盛宴
  • Java FrameWorks
    • Netty
      • Netty高级 - 高性能之道
  • Java FrameWorks
    • Shiro
      • Shiro + JWT + Spring Boot Restful 简易教程
  • Java FrameWorks
    • Shiro
      • 非常详尽的 Shiro 架构解析!
  • Java FrameWorks
    • Spring
      • Spring AOP 使用介绍,从前世到今生
  • Java FrameWorks
    • Spring
      • Spring AOP 源码解析
  • Java FrameWorks
    • Spring
      • Spring Event 实现原理
  • Java FrameWorks
    • Spring
      • Spring Events
  • Java FrameWorks
    • Spring
      • Spring IOC容器源码分析
  • Java FrameWorks
    • Spring
      • Spring Integration简介
  • Java FrameWorks
    • Spring
      • Spring MVC 框架中拦截器 Interceptor 的使用方法
  • Java FrameWorks
    • Spring
      • Spring bean 解析、注册、实例化流程源码剖析
  • Java FrameWorks
    • Spring
      • Spring validation中@NotNull、@NotEmpty、@NotBlank的区别
  • Java FrameWorks
    • Spring
      • Spring 如何解决循环依赖?
  • Java FrameWorks
    • Spring
      • Spring 异步实现原理与实战分享
  • Java FrameWorks
    • Spring
      • Spring中的“for update”问题
  • Java FrameWorks
    • Spring
      • Spring中的设计模式
  • Java FrameWorks
    • Spring
      • Spring事务失效的 8 大原因
  • Java FrameWorks
    • Spring
      • Spring事务管理详解
  • Java FrameWorks
    • Spring
      • Spring计时器StopWatch使用
  • Java FrameWorks
    • Spring
      • 详述 Spring MVC 框架中拦截器 Interceptor 的使用方法
  • Java FrameWorks
    • Spring
      • 透彻的掌握 Spring 中@transactional 的使用
  • Java
    • Java IO&NIO&AIO
      • Java IO - BIO 详解
  • Java
    • Java IO&NIO&AIO
      • Java NIO - IO多路复用详解
  • Java
    • Java IO&NIO&AIO
      • Java N(A)IO - Netty
  • Java
    • Java IO&NIO&AIO
      • Java IO - Unix IO模型
  • Java
    • Java IO&NIO&AIO
      • Java IO - 分类
  • Java
    • Java IO&NIO&AIO
      • Java NIO - 基础详解
  • Java
    • Java IO&NIO&AIO
      • Java IO - 常见类使用
  • Java
    • Java IO&NIO&AIO
      • Java AIO - 异步IO详解
  • Java
    • Java IO&NIO&AIO
      • Java IO概述
  • Java
    • Java IO&NIO&AIO
      • Java IO - 设计模式
  • Java
    • Java IO&NIO&AIO
      • Java NIO - 零拷贝实现
  • Java
    • Java JVM
      • JVM 优化经验总结
  • Java
    • Java JVM
      • JVM 内存结构
  • Java
    • Java JVM
      • JVM参数设置
  • Java
    • Java JVM
      • Java 内存模型
  • Java
    • Java JVM
      • 从实际案例聊聊Java应用的GC优化
  • Java
    • Java JVM
      • Java 垃圾回收器G1详解
  • Java
    • Java JVM
      • 垃圾回收器Shenandoah GC详解
  • Java
    • Java JVM
      • 垃圾回收器ZGC详解
  • Java
    • Java JVM
      • 垃圾回收基础
  • Java
    • Java JVM
      • 如何优化Java GC
  • Java
    • Java JVM
      • 类加载机制
  • Java
    • Java JVM
      • 类字节码详解
  • Java
    • Java 基础
      • Java hashCode() 和 equals()
  • Java
    • Java 基础
      • Java 基础 - Java native方法以及JNI实践
  • Java
    • Java 基础
      • Java serialVersionUID 有什么作用?
  • Java
    • Java 基础
      • Java 泛型的类型擦除
  • Java
    • Java 基础
      • Java 基础 - Unsafe类解析
  • Java
    • Java 基础
      • Difference Between Statement and PreparedStatement
  • Java
    • Java 基础
      • Java 基础 - SPI机制详解
  • Java
    • Java 基础
      • Java 基础 - final
  • Java
    • Java 基础
      • Java中static关键字详解
  • Java
    • Java 基础
      • 为什么说Java中只有值传递?
  • Java
    • Java 基础
      • Java 基础 - 即时编译器原理解析及实践
  • Java
    • Java 基础
      • Java 基础 - 反射
  • Java
    • Java 基础
      • Java多态的面试题
  • Java
    • Java 基础
      • Java 基础 - 异常机制详解
  • Java
    • Java 基础
      • 为什么要有抽象类?
  • Java
    • Java 基础
      • 接口的本质
  • Java
    • Java 基础
      • Java 基础 - 枚举
  • Java
    • Java 基础
      • Java 基础 - 泛型机制详解
  • Java
    • Java 基础
      • Java 基础 - 注解机制详解
  • Java
    • Java 基础
      • 为什么 String hashCode 方法选择数字31作为乘子
  • Java
    • Java 并发
      • Java 并发 - 14个Java并发容器
  • Java
    • Java 并发
      • Java 并发 - AQS
  • Java
    • Java 并发
      • Java 并发 - BlockingQueue
  • Java
    • Java 并发
      • Java 并发 - CAS
  • Java
    • Java 并发
      • Java 并发 - Condition接口
  • Java
    • Java 并发
      • Java 并发 - CopyOnWriteArrayList
  • Java
    • Java 并发
      • Java 并发 - CountDownLatch、CyclicBarrier和Phaser对比
  • Java
    • Java 并发
      • Java 并发 - Fork&Join框架
  • Java
    • Java 并发
      • Java 并发 - Java CompletableFuture 详解
  • Java
    • Java 并发
      • Java 并发 - Java 线程池
  • Java
    • Java 并发
      • Java 并发 - Lock接口
  • Java
    • Java 并发
      • Java 并发 - ReentrantLock
  • Java
    • Java 并发
      • Java 并发 - ReentrantReadWriteLock
  • Java
    • Java 并发
      • Java 并发 - Synchronized
  • Java
    • Java 并发
      • Java 并发 - ThreadLocal 内存泄漏问题
  • Java
    • Java 并发
      • Java 并发 - ThreadLocal
  • Java
    • Java 并发
      • Java 并发 - Volatile
  • Java
    • Java 并发
      • Java 并发 - 从ReentrantLock的实现看AQS的原理及应用
  • Java
    • Java 并发
      • Java 并发 - 公平锁和非公平锁
  • Java
    • Java 并发
      • Java 并发 - 内存模型
  • Java
    • Java 并发
      • Java 并发 - 原子类
  • Java
    • Java 并发
      • Java 并发 - 如何确保三个线程顺序执行?
  • Java
    • Java 并发
      • Java 并发 - 锁
  • Java
    • Java 的新特性
      • Java 10 新特性概述
  • Java
    • Java 的新特性
      • Java 11 新特性概述
  • Java
    • Java 的新特性
      • Java 12 新特性概述
  • Java
    • Java 的新特性
      • Java 13 新特性概述
  • Java
    • Java 的新特性
      • Java 14 新特性概述
  • Java
    • Java 的新特性
      • Java 15 新特性概述
  • Java
    • Java 的新特性
      • Java 8的新特性
  • Java
    • Java 的新特性
      • Java 9 新特性概述
  • Java
    • Java 调试排错
      • 调试排错 - Java Debug Interface(JDI)详解
  • Java
    • Java 调试排错
      • 调试排错 - CPU 100% 排查优化实践
  • Java
    • Java 调试排错
      • 调试排错 - Java Heap Dump分析
  • Java
    • Java 调试排错
      • 调试排错 - Java Thread Dump分析
  • Java
    • Java 调试排错
      • 调试排错 - Java动态调试技术原理
  • Java
    • Java 调试排错
      • 调试排错 - Java应用在线调试Arthas
  • Java
    • Java 调试排错
      • 调试排错 - Java问题排查:工具单
  • Java
    • Java 调试排错
      • 调试排错 - 内存溢出与内存泄漏
  • Java
    • Java 调试排错
      • 调试排错 - 在线分析GC日志的网站GCeasy
  • Java
    • Java 调试排错
      • 调试排错 - 常见的GC问题分析与解决
  • Java
    • Java 集合
      • Java 集合 - ArrayList
  • Java
    • Java 集合
      • Java 集合 - HashMap 和 ConcurrentHashMap
  • Java
    • Java 集合
      • Java 集合 - HashMap的死循环问题
  • Java
    • Java 集合
      • Java 集合 - LinkedHashSet&Map
  • Java
    • Java 集合
      • Java 集合 - LinkedList
  • Java
    • Java 集合
      • Java 集合 - PriorityQueue
  • Java
    • Java 集合
      • Java 集合 - Stack & Queue
  • Java
    • Java 集合
      • Java 集合 - TreeSet & TreeMap
  • Java
    • Java 集合
      • Java 集合 - WeakHashMap
  • Java
    • Java 集合
      • Java 集合 - 为什么HashMap的容量是2的幂次方
  • Java
    • Java 集合
      • Java 集合 - 概览
  • Java
    • Java 集合
      • Java 集合 - 高性能队列Disruptor详解
  • 分布式
    • RPC
      • ⭐️RPC - Dubbo&hsf&Spring cloud的区别
  • 分布式
    • RPC
      • ⭐️RPC - Dubbo的架构原理
  • 分布式
    • RPC
      • ⭐️RPC - HSF的原理分析
  • 分布式
    • RPC
      • ⭐️RPC - 你应该知道的RPC原理
  • 分布式
    • RPC
      • ⭐️RPC - 动态代理
  • 分布式
    • RPC
      • 深入理解 RPC 之协议篇
  • 分布式
    • RPC
      • RPC - 序列化和反序列化
  • 分布式
    • RPC
      • ⭐️RPC - 服务注册与发现
  • 分布式
    • RPC
      • RPC - 核心原理
  • 分布式
    • RPC
      • ⭐️RPC - 框架对比
  • 分布式
    • RPC
      • ⭐️RPC - 网络通信
  • 分布式
    • 分布式事务
      • 分布式事务 Seata TCC 模式深度解析
  • 分布式
    • 分布式事务
      • 分布式事务的实现原理
  • 分布式
    • 分布式事务
      • 常用的分布式事务解决方案
  • 分布式
    • 分布式事务
      • 手写实现基于消息队列的分布式事务框架
  • 分布式
    • 分布式算法
      • CAP 定理的含义
  • 分布式
    • 分布式算法
      • Paxos和Raft比较
  • 分布式
    • 分布式算法
      • 分布式一致性与共识算法
  • 分布式
    • 分布式锁
      • ⭐️分布式锁的原理及实现方式
  • 分布式
    • 搜索引擎
      • ElasticSearch与SpringBoot的集成与JPA方法的使用
  • 分布式
    • 搜索引擎
      • 全文搜索引擎 Elasticsearch 入门教程
  • 分布式
    • 搜索引擎
      • 十分钟学会使用 Elasticsearch 优雅搭建自己的搜索系统
  • 分布式
    • 搜索引擎
      • 腾讯万亿级 Elasticsearch 技术解密
  • 分布式
    • 日志系统
      • Grafana Loki 简明教程
  • 分布式
    • 日志系统
      • 分布式系统中如何优雅地追踪日志
  • 分布式
    • 日志系统
      • 如何优雅地记录操作日志?
  • 分布式
    • 日志系统
      • 日志收集组件—Flume、Logstash、Filebeat对比
  • 分布式
    • 日志系统
      • 集中式日志系统 ELK 协议栈详解
  • 分布式
    • 消息队列
      • 消息队列 - Kafka
  • 分布式
    • 消息队列
      • 消息队列 - Kafka、RabbitMQ、RocketMQ等消息中间件的对比
  • 分布式
    • 消息队列
      • 消息队列之 RabbitMQ
  • 分布式
    • 消息队列
      • 消息队列 - 使用docker-compose构建kafka集群
  • 分布式
    • 消息队列
      • 消息队列 - 分布式系统与消息的投递
  • 分布式
    • 消息队列
      • 消息队列 - 如何保证消息的可靠性传输
  • 分布式
    • 消息队列
      • 消息队列 - 如何保证消息的顺序性
  • 分布式
    • 消息队列
      • 消息队列 - 如何保证消息队列的高可用
  • 分布式
    • 消息队列
      • 消息队列 - 消息队列设计精要
  • 分布式
    • 监控系统
      • 深度剖析开源分布式监控CAT
  • 大数据
    • Flink
      • Flink架构与核心组件
  • 微服务
    • Dubbo
      • 基于dubbo的分布式应用中的统一异常处理
  • 微服务
    • Dubbo
      • Vim快捷键
  • 微服务
    • Service Mesh
      • Istio 是什么?
  • 微服务
    • Service Mesh
      • OCTO 2.0:美团基于Service Mesh的服务治理系统详解
  • 微服务
    • Service Mesh
      • Service Mesh是什么?
  • 微服务
    • Service Mesh
      • Spring Cloud向Service Mesh迁移
  • 微服务
    • Service Mesh
      • 数据挖掘算法
  • 微服务
    • Service Mesh
      • Seata Saga 模式
  • 微服务
    • Spring Cloud
      • Seata TCC 模式
  • 微服务
    • Spring Cloud
      • Spring Cloud Config
  • 微服务
    • Spring Cloud
      • Seata AT 模式
  • 微服务
    • Spring Cloud
      • Spring Cloud Gateway
  • 微服务
    • Spring Cloud
      • Spring Cloud OpenFeign 的核心原理
  • 微服务
    • Spring Cloud
      • Seata XA 模式
  • 数据库
    • Database Version Control
      • Liquibase vs. Flyway
  • 数据库
    • Database Version Control
      • Six reasons to version control your database
  • 数据库
    • MySQL
      • How Sharding Works
  • 数据库
    • MySQL
      • MySQL InnoDB中各种SQL语句加锁分析
  • 数据库
    • MySQL
      • MySQL 事务隔离级别和锁
  • 数据库
    • MySQL
      • MySQL 索引性能分析概要
  • 数据库
    • MySQL
      • MySQL 索引设计概要
  • 数据库
    • MySQL
      • MySQL出现Waiting for table metadata lock的原因以及解决方法
  • 数据库
    • MySQL
      • MySQL的Limit性能问题
  • 数据库
    • MySQL
      • MySQL索引优化explain
  • 数据库
    • MySQL
      • MySQL索引背后的数据结构及算法原理
  • 数据库
    • MySQL
      • MySQL行转列、列转行问题
  • 数据库
    • MySQL
      • 一条SQL更新语句是如何执行的?
  • 数据库
    • MySQL
      • 一条SQL查询语句是如何执行的?
  • 数据库
    • MySQL
      • 为什么 MySQL 使用 B+ 树
  • 数据库
    • MySQL
      • 为什么 MySQL 的自增主键不单调也不连续
  • 数据库
    • MySQL
      • 为什么我的MySQL会“抖”一下?
  • 数据库
    • MySQL
      • 为什么数据库不应该使用外键
  • 数据库
    • MySQL
      • 为什么数据库会丢失数据
  • 数据库
    • MySQL
      • 事务的可重复读的能力是怎么实现的?
  • 数据库
    • MySQL
      • 大众点评订单系统分库分表实践
  • 数据库
    • MySQL
      • 如何保证缓存与数据库双写时的数据一致性?
  • 数据库
    • MySQL
      • 浅谈数据库并发控制 - 锁和 MVCC
  • 数据库
    • MySQL
      • 深入浅出MySQL 中事务的实现
  • 数据库
    • MySQL
      • 浅入浅出MySQL 和 InnoDB
  • 数据库
    • PostgreSQL
      • PostgreSQL upsert功能(insert on conflict do)的用法
  • 数据库
    • Redis
      • Redis GEO & 实现原理深度分析
  • 数据库
    • Redis
      • Redis 和 I/O 多路复用
  • 数据库
    • Redis
      • Redis分布式锁
  • 数据库
    • Redis
      • Redis实现分布式锁中的“坑”
  • 数据库
    • Redis
      • Redis总结
  • 数据库
    • Redis
      • 史上最全Redis高可用技术解决方案大全
  • 数据库
    • Redis
      • Redlock:Redis分布式锁最牛逼的实现
  • 数据库
    • Redis
      • 为什么 Redis 选择单线程模型
  • 数据库
    • TiDB
      • 新一代数据库TiDB在美团的实践
  • 数据库
    • 数据仓库
      • 实时数仓在有赞的实践
  • 数据库
    • 数据库原理
      • OLTP与OLAP的关系是什么?
  • 数据库
    • 数据库原理
      • 为什么 OLAP 需要列式存储
  • 系统设计
    • DDD
      • Domain Primitive
  • 系统设计
    • DDD
      • Repository模式
  • 系统设计
    • DDD
      • 应用架构
  • 系统设计
    • DDD
      • 聊聊如何避免写流水账代码
  • 系统设计
    • DDD
      • 领域层设计规范
  • 系统设计
    • DDD
      • 从三明治到六边形
  • 系统设计
    • DDD
      • 阿里盒马领域驱动设计实践
  • 系统设计
    • DDD
      • 领域驱动设计(DDD)编码实践
  • 系统设计
    • DDD
      • 领域驱动设计在互联网业务开发中的实践
  • 系统设计
    • 基础架构
      • 容错,高可用和灾备
  • 系统设计
    • 数据聚合
      • GraphQL及元数据驱动架构在后端BFF中的实践
  • 系统设计
    • 数据聚合
      • 高效研发-闲鱼在数据聚合上的探索与实践
  • 系统设计
    • 服务安全
      • JSON Web Token 入门教程
  • 系统设计
    • 服务安全
      • 你还在用JWT做身份认证嘛?
  • 系统设计
    • 服务安全
      • 凭证(Credentials)
  • 系统设计
    • 服务安全
      • 授权(Authorization)
  • 系统设计
    • 服务安全
      • 理解OAuth2.0
  • 系统设计
    • 服务安全
      • 认证(Authentication)
  • 系统设计
    • 架构案例
      • 微信 Android 客户端架构演进之路
  • 系统设计
    • 高可用架构
      • 业务高可用的保障:异地多活架构
  • 计算机基础
    • 字符编码
      • Base64原理解析
  • 计算机基础
    • 字符编码
      • 字符编码笔记:ASCII,Unicode 和 UTF-8
  • 计算机基础
    • 操作系统
      • 为什么 CPU 访问硬盘很慢
  • 计算机基础
    • 操作系统
      • 为什么 HTTPS 需要 7 次握手以及 9 倍时延
  • 计算机基础
    • 操作系统
      • 为什么 Linux 默认页大小是 4KB
  • 计算机基础
    • 操作系统
      • 磁盘IO那些事
  • 计算机基础
    • 操作系统
      • 虚拟机的3种网络模式
  • 计算机基础
    • 服务器
      • mac终端bash、zsh、oh-my-zsh最实用教程
  • 计算机基础
    • 服务器
      • Nginx强制跳转Https
  • 计算机基础
    • 服务器
      • curl 的用法指南
  • 计算机基础
    • 网络安全
      • 如何设计一个安全的对外接口?
  • 计算机基础
    • 网络安全
      • 浅谈常见的七种加密算法及实现
  • 计算机基础
    • 网络编程
      • MQTT - The Standard for IoT Messaging
  • 计算机基础
    • 网络编程
      • 两万字长文 50+ 张趣图带你领悟网络编程的内功心法
  • 计算机基础
    • 网络编程
      • 为什么 TCP 协议有 TIME_WAIT 状态
  • 计算机基础
    • 网络编程
      • 为什么 TCP 协议有性能问题
  • 计算机基础
    • 网络编程
      • 为什么 TCP 协议有粘包问题
  • 计算机基础
    • 网络编程
      • 为什么 TCP 建立连接需要三次握手
  • 计算机基础
    • 网络编程
      • 为什么 TCP/IP 协议会拆分数据
  • 计算机基础
    • 网络编程
      • 使用 OAuth 2 和 JWT 为微服务提供安全保障
  • 计算机基础
    • 网络编程
      • 四种常见的 POST 提交数据方式
  • 计算机基础
    • 网络编程
      • 有赞TCP网络编程最佳实践
  • 计算机基础
    • 网络编程
      • 看完这篇HTTP,跟面试官扯皮就没问题了
  • 计算机基础
    • 网络编程
      • 详细解析 HTTP 与 HTTPS 的区别
  • 质量&效率
    • 快捷键
      • Idea快捷键(Mac版)
  • 质量&效率
    • 快捷键
      • Shell快捷键
  • 质量&效率
    • 快捷键
      • conduit
  • 质量&效率
    • 敏捷开发
      • Scrum的3种角色
  • 质量&效率
    • 敏捷开发
      • Scrum的4种会议
  • 质量&效率
    • 敏捷开发
      • ThoughtWorks的敏捷开发
  • 质量&效率
    • 敏捷开发
      • 敏捷开发入门教程
  • 运维&测试
    • Docker
      • Docker (容器) 的原理
  • 运维&测试
    • Docker
      • Docker Compose:链接外部容器的几种方式
  • 运维&测试
    • Docker
      • Docker 入门教程
  • 运维&测试
    • Docker
      • Docker 核心技术与实现原理
  • 运维&测试
    • Docker
      • Dockerfile 最佳实践
  • 运维&测试
    • Docker
      • Docker开启Remote API 访问 2375端口
  • 运维&测试
    • Docker
      • Watchtower - 自动更新 Docker 镜像与容器
  • 运维&测试
    • Kubernetes
      • Kubernetes 介绍
  • 运维&测试
    • Kubernetes
      • Kubernetes 在有赞的实践
  • 运维&测试
    • Kubernetes
      • Kubernetes 学习路径
  • 运维&测试
    • Kubernetes
      • Kubernetes如何改变美团的云基础设施?
  • 运维&测试
    • Kubernetes
      • Kubernetes的三种外部访问方式:NodePort、LoadBalancer 和 Ingress
  • 运维&测试
    • Kubernetes
      • 谈 Kubernetes 的架构设计与实现原理
  • 运维&测试
    • 压测
      • 全链路压测平台(Quake)在美团中的实践
  • 运维&测试
    • 测试
      • Cpress - JavaScript End to End Testing Framework
  • 运维&测试
    • 测试
      • 代码覆盖率-JaCoCo
  • 运维&测试
    • 测试
      • 浅谈代码覆盖率
  • 运维&测试
    • 测试
      • 测试中 Fakes、Mocks 以及 Stubs 概念明晰
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP中的Bean是如何被AOP代理的
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP原生动态代理和Cglib动态代理
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP实现方式(xml&注解)
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP是如何收集切面类并封装的
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP概述
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP的底层核心后置处理器
  • Java FrameWorks
    • Spring
      • Spring AOP
        • Spring AOP的延伸知识
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot - IOC(一)
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot - IOC(三)
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot - IOC(二)
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot - IOC(五)
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot - IOC(四) - 循环依赖与解决方案
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot - 启动引导
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot JarLauncher
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot Web Mvc 自动装配
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot 使用ApplicationListener监听器
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot 声明式事务
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot 嵌入式容器
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot引起的“堆外内存泄漏”排查及经验总结
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot的启动流程
  • Java FrameWorks
    • Spring
      • Spring Boot
        • Spring Boot自动化配置源码分析
  • Java FrameWorks
    • Spring
      • Spring Boot
        • 如何自定义Spring Boot Starter?
  • Java FrameWorks
    • Spring
      • Spring IOC
        • IOC - 模块装配和条件装配
  • Java FrameWorks
    • Spring
      • Spring IOC
        • IOC - 配置源(xml,注解)
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Environment
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring ApplicationContext
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring BeanDefinition
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring BeanFactory
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring BeanFactoryPostProcessor
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring BeanPostProcessor
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Bean的生命周期(一) - 概述
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Bean的生命周期(三) - 实例化阶段
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Bean的生命周期(二) - BeanDefinition
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Bean的生命周期(五) - 销毁阶段
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Bean的生命周期(四) - 初始化阶段
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring ComponentScan
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Events
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring IOC 基础篇
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring IOC 总结
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring IOC 进阶篇
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring IOC容器的生命周期
  • Java FrameWorks
    • Spring
      • Spring IOC
        • Spring Resource
  • Java FrameWorks
    • Spring
      • Spring MVC
        • DispatcherServlet的初始化原理
  • Java FrameWorks
    • Spring
      • Spring MVC
        • DispatcherServlet的核心工作原理
  • Java FrameWorks
    • Spring
      • Spring MVC
        • WebMvc的架构设计与组件功能解析
  • Java FrameWorks
    • Spring
      • Spring Security
        • Spring Boot 2 + Spring Security 5 + JWT 的单页应用 Restful 解决方案
  • Java FrameWorks
    • Spring
      • Spring Security
        • Spring Security Oauth
  • Java FrameWorks
    • Spring
      • Spring Security
        • Spring Security
  • Java FrameWorks
    • Spring
      • Spring WebFlux
        • DispatcherHandler的工作原理(传统方式)
  • Java FrameWorks
    • Spring
      • Spring WebFlux
        • DispatcherHandler的工作原理(函数式端点)
  • Java FrameWorks
    • Spring
      • Spring WebFlux
        • WebFlux的自动装配
  • Java FrameWorks
    • Spring
      • Spring WebFlux
        • 快速了解响应式编程与Reactive
  • Java FrameWorks
    • Spring
      • Spring WebFlux
        • 快速使用WebFlux
  • 分布式
    • 协调服务
      • Zookeeper
        • Zookeeper - 客户端之 Curator
  • 分布式
    • 协调服务
      • Zookeeper
        • 详解分布式协调服务 ZooKeeper
  • 分布式
    • 协调服务
      • etcd
        • 高可用分布式存储 etcd 的实现原理
  • 数据库
    • Database Version Control
      • Flyway
        • Database Migrations with Flyway
  • 数据库
    • Database Version Control
      • Flyway
        • How Flyway works
  • 数据库
    • Database Version Control
      • Flyway
        • Rolling Back Migrations with Flyway
  • 数据库
    • Database Version Control
      • Flyway
        • The meaning of the concept of checksums
  • 数据库
    • Database Version Control
      • Liquibase
        • Introduction to Liquibase Rollback
  • 数据库
    • Database Version Control
      • Liquibase
        • LiquiBase中文学习指南
  • 数据库
    • Database Version Control
      • Liquibase
        • Use Liquibase to Safely Evolve Your Database Schema
  • 系统设计
    • 流量控制
      • RateLimiter
        • Guava Rate Limiter实现分析
  • 系统设计
    • 流量控制
      • Sentinel
        • Sentinel 与 Hystrix 的对比
  • 系统设计
    • 流量控制
      • Sentinel
        • Sentinel工作主流程
  • 系统设计
    • 流量控制
      • 算法
        • 分布式服务限流实战
  • 系统设计
    • 解决方案
      • 秒杀系统
        • 如何设计一个秒杀系统
  • 系统设计
    • 解决方案
      • 红包系统
        • 微信高并发资金交易系统设计方案--百亿红包背后的技术支撑
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • 什么是预排序遍历树算法(MPTT,Modified Preorder Tree Traversal)
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • 加密算法
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • 推荐系统算法
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • linkerd
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • 查找算法
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • 缓存淘汰算法中的LRU和LFU
  • 计算机基础
    • 数据结构与算法
      • 其他相关
        • 负载均衡算法
  • 计算机基础
    • 数据结构与算法
      • 分布式算法
        • 分布式算法 - Paxos算法
  • 计算机基础
    • 数据结构与算法
      • 分布式算法
        • 分布式算法 - Raft算法
  • 计算机基础
    • 数据结构与算法
      • 分布式算法
        • 分布式算法 - Snowflake算法
  • 计算机基础
    • 数据结构与算法
      • 分布式算法
        • 分布式算法 - ZAB算法
  • 计算机基础
    • 数据结构与算法
      • 分布式算法
        • 分布式算法 - 一致性Hash算法
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - Bitmap & Bloom Filter
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - Map & Reduce
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - Trie树/数据库/倒排索引
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - 分治/hash/排序
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - 双层桶划分
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - 外(磁盘文件)排序
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理 - 布隆过滤器
  • 计算机基础
    • 数据结构与算法
      • 大数据处理
        • 大数据处理算法
  • 计算机基础
    • 数据结构与算法
      • 字符串匹配算法
        • 字符串匹配 - 文本预处理:后缀树(Suffix Tree)
  • 计算机基础
    • 数据结构与算法
      • 字符串匹配算法
        • 字符串匹配 - 模式预处理:BM 算法 (Boyer-Moore)
  • 计算机基础
    • 数据结构与算法
      • 字符串匹配算法
        • 字符串匹配 - 模式预处理:KMP 算法(Knuth-Morris-Pratt)
  • 计算机基础
    • 数据结构与算法
      • 字符串匹配算法
        • 字符串匹配 - 模式预处理:朴素算法(Naive)(暴力破解)
  • 计算机基础
    • 数据结构与算法
      • 字符串匹配算法
        • 字符串匹配
  • 计算机基础
    • 数据结构与算法
      • 常用算法
        • 分支限界算法
  • 计算机基础
    • 数据结构与算法
      • 常用算法
        • 分治算法
  • 计算机基础
    • 数据结构与算法
      • 常用算法
        • 动态规划算法
  • 计算机基础
    • 数据结构与算法
      • 常用算法
        • 回溯算法
  • 计算机基础
    • 数据结构与算法
      • 常用算法
        • 贪心算法
  • 计算机基础
    • 数据结构与算法
      • 排序算法
        • 十大排序算法
  • 计算机基础
    • 数据结构与算法
      • 排序算法
        • 图解排序算法(一)之3种简单排序(选择,冒泡,直接插入)
  • 计算机基础
    • 数据结构与算法
      • 排序算法
        • 图解排序算法(三)之堆排序
  • 计算机基础
    • 数据结构与算法
      • 排序算法
        • 图解排序算法(二)之希尔排序
  • 计算机基础
    • 数据结构与算法
      • 排序算法
        • 图解排序算法(四)之归并排序
  • 计算机基础
    • 数据结构与算法
      • 数据结构
        • 树的高度和深度
  • 计算机基础
    • 数据结构与算法
      • 数据结构
        • 红黑树深入剖析及Java实现
  • 计算机基础
    • 数据结构与算法
      • 数据结构
        • 线性结构 - Hash
  • 计算机基础
    • 数据结构与算法
      • 数据结构
        • 线性结构 - 数组、链表、栈、队列
  • 计算机基础
    • 数据结构与算法
      • 数据结构
        • 逻辑结构 - 树
  • 运维&测试
    • 测试
      • Spock
        • Groovy 简明教程
  • 运维&测试
    • 测试
      • Spock
        • Spock 官方文档
  • 运维&测试
    • 测试
      • Spock
        • Spock单元测试框架介绍以及在美团优选的实践
  • 运维&测试
    • 测试
      • TDD
        • TDD 实践 - FizzFuzzWhizz(一)
  • 运维&测试
    • 测试
      • TDD
        • TDD 实践 - FizzFuzzWhizz(三)
  • 运维&测试
    • 测试
      • TDD
        • TDD 实践 - FizzFuzzWhizz(二)
  • 运维&测试
    • 测试
      • TDD
        • 测试驱动开发(TDD)- 原理篇
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Nacos
          • Nacos 服务注册的原理
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Nacos
          • Nacos 配置中心原理分析
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Seata
          • 服务调用过程
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Seata
          • Spring Cloud Bus
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Seata
          • Spring Cloud Consul
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Seata
          • Spring Cloud Stream
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Sentinel
          • Sentinel 与 Hystrix 的对比
  • 微服务
    • Spring Cloud
      • Spring Cloud Alibaba
        • Sentinel
          • Sentinel
  • 微服务
    • Spring Cloud
      • Spring Cloud Netflix
        • Hystrix
          • How Hystrix Works
  • 微服务
    • Spring Cloud
      • Spring Cloud Netflix
        • Hystrix
          • Hystrix
  • 微服务
    • Spring Cloud
      • Spring Cloud Netflix
        • Hystrix
          • Hystrix原理与实战
  • 微服务
    • Spring Cloud
      • Spring Cloud Netflix
        • Hystrix
          • Spring Cloud Hystrix基本原理
由 GitBook 提供支持
在本页
  • 1. 概述
  • 1.1 官方文档
  • 1.2 javadoc
  • 1.3 接口方法定义
  • 1.4 总结
  • 2. BeanFactoryPostProcessor的使用
  • 2.1 声明bean
  • 2.2 编写后置处理器
  • 2.3 测试运行
  • 2.4 替代方案
  • 2.5 对比BeanPostProcessor与BeanFactoryPostProcessor
  • 2.6 BeanDefinition剔除的案例回顾
  • 3. BeanDefinitionRegistryPostProcessor概述
  • 3.1 javadoc
  • 3.2 如何概述BeanDefinitionRegistryPostProcessor
  • 4. BeanDefinitionRegistryPostProcessor的使用
  • 4.1 声明bean
  • 4.2 编写后置处理器
  • 4.3 测试运行
  • 4.4 运行时机分析
  • 4.5 注册BeanFactoryPostProcessor
  • 5. 三种后置处理器的对比

这有帮助吗?

  1. Java FrameWorks
  2. Spring
  3. Spring IOC

Spring BeanFactoryPostProcessor

1. 概述

1.1 官方文档

The next extension point that we look at is the org.springframework.beans.factory.config.BeanFactoryPostProcessor. The semantics of this interface are similar to those of the BeanPostProcessor, with one major difference: BeanFactoryPostProcessor operates on the bean configuration metadata. That is, the Spring IoC container lets a BeanFactoryPostProcessor read the configuration metadata and potentially change it before the container instantiates any beans other than BeanFactoryPostProcessor instances.

该接口的语义与 BeanPostProcessor 的语义相似,但有一个主要区别:BeanFactoryPostProcessor 对 Bean 的配置元数据进行操作。也就是说,IOC 容器允许 BeanFactoryPostProcessor 读取配置元数据,并有可能在容器实例化除 BeanFactoryPostProcessor 实例以外的任何 bean 之前更改它。

它操作的是 Bean 的配置元信息。而且这里面还有一个非常关键的点:它可以在 bean 实例的初始化之前修改定义信息,换句话说,它可以对原有的 BeanDefinition 进行修改。由于 SpringFramework 中设计的所有 bean 在没有实例化之前都是以 **BeanDefinition** 的形式存在,如果提前修改了 BeanDefinition ,那么在 bean 的实例化时,最终创建出的 bean 就会受到影响。这个设计,我们在下面会有演示,小伙伴们先记住 BeanFactoryPostProcessor 的这个功能就好。

1.2 javadoc

同样的,看看 javadoc 中怎么描述 BeanFactoryPostProcessor :

Allows for custom modification of an application context's bean definitions, adapting the bean property values of the context's underlying bean factory. Application contexts can auto-detect BeanFactoryPostProcessor beans in their bean definitions and apply them before any other beans get created. ... A BeanFactoryPostProcessor may interact with and modify bean definitions, but never bean instances. Doing so may cause premature bean instantiation , violating the container and causing unintended side-effects. If bean instance interaction is required, consider implementing BeanPostProcessor instead.

允许自定义修改 ApplicationContext 中的 BeanDefinition ,以适应上下文基础 BeanFactory 的 Bean 属性值。 ApplicationContext 可以在其 Bean 的定义信息中自动检测 BeanFactoryPostProcessor 的 Bean,并在创建任何其他 Bean 之前应用它们。 BeanFactoryPostProcessor 可以与 BeanDefinition 进行交互并进行修改,但不能与 bean 的实例进行交互。这样做可能会导致 bean 实例化过早,从而违反了容器的规矩并造成了意外的副作用。如果需要与 bean 实例交互,请考虑实现 BeanPostProcessor 。

讲真,这个文档注释和翻译都挺难理解的,小册试着重新解释一下。

BeanFactoryPostProcessor 本身也属于 BeanFactory 中的 bean ,但是由于它的特殊性,所以 ApplicationContext 可以检查、获取它们,并且将其应用到 BeanFactory 中。

BeanFactoryPostProcessor 的作用是在 BeanDefinition 已经注册到 BeanFactory 后,对 BeanDefinition 进行修改 / 配置。除此之外,BeanFactoryPostProcessor 与 BeanPostProcessor 没有任何关联,一个是影响 **BeanDefinition** 的,一个是影响 bean 实例的。

BeanFactoryPostProcessor 中原则上不允许访问、创建任何 bean 实例(此时 IOC 容器还没初始化好,BeanPostProcessor 都没有准备好,会导致创建的 bean 实例产生残缺)。

用这样三段话,配合官方文档,基本上就可以把 BeanFactoryPostProcessor 的作用都解释到位了,小伙伴们如果还是觉得不好理解,也没有关系,马上下面就会通过实例来研究 BeanFactoryPostProcessor 的使用。

1.3 接口方法定义

BeanFactoryPostProcessor 中只定义了一个方法,就是对 BeanFactory 的后置处理:

void postProcessBeanFactory(ConfigurableListableBeanFactory beanFactory) throws BeansException;

注意看这里的设计,即便 ConfigurableListableBeanFactory 的最终实现类只有 DefaultListableBeanFactory ,这里的入参也是接口,可见依赖倒转的设计在 SpringFramework 中体现得淋漓尽致呀!

这个方法上的 javadoc 可谓是把 BeanFactoryPostProcessor 的作用时机和使用方法都说明白了:

Modify the application context's internal bean factory after its standard initialization. All bean definitions will have been loaded, but no beans will have been instantiated yet. This allows for overriding or adding properties even to eager-initializing beans.

在标准初始化之后,修改 ApplicationContext 内部的 BeanFactory 。此时所有 BeanDefinition 都将被加载,但尚未实例化任何 bean 。在此可以给 bean 覆盖或添加属性,甚至可以用于初始化 bean 。

是不是已经开始感觉有点啰嗦了?如果感觉到啰嗦,那就说明小伙伴已经慢慢有感觉了,小册配个图帮小伙伴检验一下自己想的对不对吧。

1.4 总结

**BeanFactoryPostProcessor** 是容器的扩展点,它用于 IOC 容器的生命周期中,所有 **BeanDefinition** 都注册到 **BeanFactory** 后回调触发,用于访问 / 修改已经存在的 **BeanDefinition** 。与 **BeanPostProcessor** 相同,它们都是容器隔离的,不同容器中的 **BeanFactoryPostProcessor** 不会相互起作用。

关键回答点:改变 Bean 的定义信息。

2. BeanFactoryPostProcessor的使用

下面我们来实际使用一下 BeanFactoryPostProcessor ,来体会它对 BeanDefinition 的访问和修改。

先说下需求吧:构造几个 Color 的类对象,并在 bean 还没有创建之前,把 bean 的名称设置到 bean 的属性上。

2.1 声明bean

咱不搞那么复杂的模型,一个 Color 的抽象类加两个子类就好:(注意两个子类要标注 @Component 注解注册到 IOC 容器)

public abstract class Color {

    protected String name;
    
    public String getName() {
        return name;
    }
    
    public void setName(String name) {
        this.name = name;
    }
}
@Component
public class Red extends Color {
    
    @Override
    public String toString() {
        return "Red{" + "name='" + name + '\'' + "}";
    }
}
@Component
public class Green extends Color {
    
    @Override
    public String toString() {
        return "Green{" + "name='" + name + '\'' + "}";
    }
}

2.2 编写后置处理器

先理一下思路:后置处理器中,既然拿到的参数是 BeanFactory ,那就可以取出里面的 BeanDefinition ,并给它们添加属性值了。

先把架子写出来,由于 ConfigurableListableBeanFactory 无法通过类型取出指定的 bean ,所以只能取出全部,挨个判断了:

@Component
public class ColorNameSetterFactoryPostProcessor implements BeanFactoryPostProcessor {
    
    @Override
    public void postProcessBeanFactory(ConfigurableListableBeanFactory beanFactory) throws BeansException {
        Stream.of(beanFactory.getBeanDefinitionNames()).forEach(beanName -> {
            BeanDefinition beanDefinition = beanFactory.getBeanDefinition(beanName);
        });
    }
}

之后就是判断 BeanDefinition 内部生成 bean 的类型了,由于只能获取到 beanClassName ,没有办法取父类,所以只能借助反射来搞定了:

public void postProcessBeanFactory(ConfigurableListableBeanFactory beanFactory) throws BeansException {
    Stream.of(beanFactory.getBeanDefinitionNames()).forEach(beanName -> {
        BeanDefinition beanDefinition = beanFactory.getBeanDefinition(beanName);
        if (StringUtils.hasText(beanDefinition.getBeanClassName())) {
            if (Class.forName(beanDefinition.getBeanClassName()).getSuperclass().equals(Color.class)) {

            }
        }
    });
}

不过这样写,Class.forName() 方法会提示需要捕捉 ClassNotFoundException 。最简单的方法是在整个 foreach 外层套一个 try-catch ,不过我们可以利用 SpringFramework 中的工具类 ClassUtils 来避免异常捕捉:

ClassUtils.resolveClassName(beanDefinition.getBeanClassName(), this.getClass().getClassLoader())

ClassUtils.resolveClassName() 方法内部已经帮我们搞定了 try-catch ,所以不会再出现异常类型检查和捕捉的提示。

如果这样判断后,bean 的父类确实是 Color ,那就可以添加属性值了:

public void postProcessBeanFactory(ConfigurableListableBeanFactory beanFactory) throws BeansException {
    Stream.of(beanFactory.getBeanDefinitionNames()).forEach(beanName -> {
        BeanDefinition beanDefinition = beanFactory.getBeanDefinition(beanName);
        if (StringUtils.hasText(beanDefinition.getBeanClassName())) {
            if (ClassUtils.resolveClassName(beanDefinition.getBeanClassName(), this.getClass().getClassLoader())
                .getSuperclass().equals(Color.class)) {
                beanDefinition.getPropertyValues().add("name", beanName);
            }
        }
    });
}

2.3 测试运行

与前面的套路一样,直接使用注解 IOC 容器,包扫描驱动:

public class FactoryProcessorApplication {
    
    public static void main(String[] args) throws Exception {
        AnnotationConfigApplicationContext ctx = new AnnotationConfigApplicationContext(
                "com.linkedbear.spring.postprocessor.h_factoryprocessor");
        Red red = ctx.getBean(Red.class);
        System.out.println(red);
    }
}

运行 main 方法,控制台打印出 red 的 name 属性,证明 ColorNameSetterFactoryPostProcessor 已经起到了作用。

2.4 替代方案

可能会有小伙伴察觉到哪里不对劲了:哎,这个策略如果用 BeanPostProcessor 实现,岂不是更简单?

public class ColorNameSetterPostProcessor implements BeanPostProcessor {
    
    @Override
    public Object postProcessAfterInitialization(Object bean, String beanName) throws BeansException {
        if (bean instanceof Color) {
            Color color = (Color) bean;
            color.setName(beanName);
        }
        return bean;
    }
}

显然,这种写法更简单是吧。对于这种需求来讲,固然是使用 BeanPostProcessor 更好。小伙伴辩证的根据需求确定解决方案,这个非常好!赞赏之余,小册想多说一句:既然 SpringFramework 中有这个设计,自然也有它的使用场景,而且我们最好对比着来看这两种不同的后置处理器。

2.5 对比BeanPostProcessor与BeanFactoryPostProcessor

以下答案仅供参考,可根据自己的理解调整、组织回答:

BeanPostProcessor
BeanFactoryPostProcessor

处理目标

bean 实例

BeanDefinition

执行时机

bean 的初始化阶段前后(已创建出 bean 对象)

BeanDefinition 解析完毕,注册进 BeanFactory的阶段( bean 未实例化)

可操作的空间

给 bean 的属性赋值、创建代理对象等

给 BeanDefinition中增删属性、移除 BeanDefinition等

2.6 BeanDefinition剔除的案例回顾

还记得 25 章 2.2.3 节我们演示的 BeanDefinition 剔除吗?当时那个案例是把所有的性别为 male 的 Person 都剔除掉,这样容器初始化的时候不会创建这些 Person 对象。不过那里面用的是强转到 BeanDefinitionRegistry 了,这个操作虽然没什么危险,但编程原则上还是不太合适的。so ,有没有针对 BeanDefinitionRegistry 的后置处理器呢?哎,还真有,接下来我们继续往下学习。

3. BeanDefinitionRegistryPostProcessor概述

关于 BeanDefinitionRegistryPostProcessor ,在官方文档上没有任何的信息可以供我们参考,so 只能靠 javadoc 了。

3.1 javadoc

Extension to the standard BeanFactoryPostProcessor SPI, allowing for the registration of further bean definitions before regular BeanFactoryPostProcessor detection kicks in. In particular, BeanDefinitionRegistryPostProcessor may register further bean definitions which in turn define BeanFactoryPostProcessor instances.

对标准 BeanFactoryPostProcessor 的 SPI 的扩展,允许在进行常规 BeanFactoryPostProcessor 检测之前注册其他 Bean 的定义信息。特别是, BeanDefinitionRegistryPostProcessor 可以注册其他 Bean 的定义,这些定义又定义了 BeanFactoryPostProcessor 实例。

文档注释中又提到这个陌生的概念了:SPI ,不要方,后面 30 章的模块装配综合案例中会详细介绍 SPI 的。

抓住注释中最关键的一句话:允许在 **BeanFactoryPostProcessor** 之前注册其他的 **BeanDefinition** ,这个才是重中之重!这句话想表达的 **BeanDefinitionRegistryPostProcessor** 的执行时机比 **BeanFactoryPostProcessor** 更早,BeanFactoryPostProcessor 一般只用来修改、扩展 BeanDefinition 中的信息,而 BeanDefinitionRegistryPostProcessor 则可以在 BeanFactoryPostProcessor 处理 BeanDefinition 之前,向 BeanFactory 注册新的 BeanDefinition ,甚至注册新的 BeanFactoryPostProcessor 用于下一个阶段的回调。

这段话干说可能很难理解,我们来借助一张图理解:

这样就好理解多了吧!不过实际执行的机制跟上面的图还有一点点小差别:由于实现了 BeanDefinitionRegistryPostProcessor 的类同时也实现了 BeanFactoryPostProcessor 的 postProcessBeanFactory 方法,所以在执行完所有 BeanDefinitionRegistryPostProcessor 的接口方法后,会立即执行这些类的 postProcessBeanFactory 方法,之后才是执行那些普通的只实现了 BeanFactoryPostProcessor 的 postProcessBeanFactory 方法。

3.2 如何概述BeanDefinitionRegistryPostProcessor

以下答案仅供参考,可根据自己的理解调整回答内容:

**BeanDefinitionRegistryPostProcessor** 是容器的扩展点,它用于 IOC 容器的生命周期中,所有 **BeanDefinition** 都准备好,即将加载到 **BeanFactory** 时回调触发,用于给 **BeanFactory** 中添加新的 **BeanDefinition** 。**BeanDefinitionRegistryPostProcessor** 也是容器隔离的,不同容器中的 **BeanDefinitionRegistryPostProcessor** 不会相互起作用。

关键回答点:注册新的 Bean 的定义信息

4. BeanDefinitionRegistryPostProcessor的使用

下面咱也来实际使用一下 BeanDefinitionRegistryPostProcessor ,来体会它是如何向 BeanFactory 中注册新的 BeanDefinition 。

同样也是先说下需求:有一个 Animal 的抽象动物类,两个具体的动物类 Cat 和 Dog 。一开始 IOC 容器中只注册 Cat ,没有 Dog ,使用 BeanDefinitionRegistryPostProcessor 注册一个 Dog 的对象,然后利用 BeanFactoryPostProcessor 给所有的 Animal 对象的属性赋值。

4.1 声明bean

先把抽象类 Animal 搞出来吧,这次不需要再搞 Person 的依赖了,只定义 name 属性就好啦:

public abstract class Animal {
    
    protected String name;
    
    public String getName() {
        return name;
    }
    
    public void setName(String name) {
        this.name = name;
    }
}

然后是 Cat 和 Dog ,只需要继承 Animal 就完事了:(记得给 Cat 上标注 @Component ,Dog 不标)

@Component
public class Cat extends Animal {
    
    @Override
    public String toString() {
        return "Cat{" + "name='" + name + '\'' + "}";
    }
}
public class Dog extends Animal {
    
    @Override
    public String toString() {
        return "Dog{" + "name='" + name + '\'' + '}';
    }
}

4.2 编写后置处理器

上面的需求中,我们说的是注册 Dog ,以及给所有的 Animal 赋属性值,咱把这两个职责分开:

注册 Dog 的后置处理器:

@Component
public class DogRegisterPostProcessor implements BeanDefinitionRegistryPostProcessor {
    
    @Override
    public void postProcessBeanDefinitionRegistry(BeanDefinitionRegistry registry) throws BeansException {
        if (!registry.containsBeanDefinition("dog")) {
            // 构造BeanDefinition,并注册进BeanFactory
            BeanDefinition dogDefinition = BeanDefinitionBuilder.genericBeanDefinition(Dog.class).getBeanDefinition();
            registry.registerBeanDefinition("dog", dogDefinition);
        }
    }
    
    @Override
    public void postProcessBeanFactory(ConfigurableListableBeanFactory beanFactory) throws BeansException {
    }
}

给 Animal 赋属性值的后置处理器:

@Component
public class AnimalNameSetterPostProcessor implements BeanFactoryPostProcessor {
    
    @Override
    public void postProcessBeanFactory(ConfigurableListableBeanFactory beanFactory) throws BeansException {
        String[] animalNames = beanFactory.getBeanNamesForType(Animal.class);
        Stream.of(animalNames).forEach(name -> {
            BeanDefinition beanDefinition = beanFactory.getBeanDefinition(name);
            beanDefinition.getPropertyValues().add("name", name);
        });
    }
}

4.3 测试运行

编写测试类,使用包扫描驱动 IOC 容器,并从 IOC 容器中取出 Cat 和 Dog :

public class RegistryPostProcessorApplication {
    
    public static void main(String[] args) throws Exception {
        AnnotationConfigApplicationContext ctx = new AnnotationConfigApplicationContext(
                "com.linkedbear.spring.postprocessor.i_registryprocessor");
        Cat cat = ctx.getBean(Cat.class);
        System.out.println(cat);
        Dog dog = ctx.getBean(Dog.class);
        System.out.println(dog);
    }
}

运行 main 方法,控制台可以打印出 cat 和 dog 的信息:

Cat{name='cat'}
Dog{name='dog'}

4.4 运行时机分析

两个后置处理器都成功运行了,但是 DogRegisterPostProcessor 和 AnimalNameSetterPostProcessor 两个后置处理器的 postProcessBeanFactory 方法是谁先执行的呢?是有指定的顺序吗,还是 SpringFramework 底层已经确定好了顺序呢?

给两个后置处理器的所有方法都打上控制台输出,就像这样:

    @Override
    public void postProcessBeanDefinitionRegistry(BeanDefinitionRegistry registry) throws BeansException {
        System.out.println("DogRegisterPostProcessor postProcessBeanDefinitionRegistry run ......");
        // ......
    }
    
    @Override
    public void postProcessBeanFactory(ConfigurableListableBeanFactory beanFactory) throws BeansException {
        System.out.println("DogRegisterPostProcessor postProcessBeanFactory run ......");
    }

重新运行 main 方法,控制台打印出来的顺序如下:

DogRegisterPostProcessor postProcessBeanDefinitionRegistry run ......
DogRegisterPostProcessor postProcessBeanFactory run ......
AnimalNameSetterPostProcessor postProcessBeanFactory run ......
Cat{name='cat'}
Dog{name='dog'}

由此可得出结论:**BeanDefinitionRegistryPostProcessor** 的 **postProcessBeanDefinitionRegistry** 执行完毕后,会先执行它们的 **postProcessBeanFactory** ,然后才能轮到普通的 **BeanFactoryPostProcessor** 执行。

4.5 注册BeanFactoryPostProcessor

像前面概述中说的那样,BeanDefinitionRegistryPostProcessor 还可以在 postProcessBeanDefinitionRegistry 方法中,动态的注册 BeanFactoryPostProcessor 以支持下面马上要触发的 postProcessBeanFactory 阶段回调,我们也可以来试着搞一下。

把 AnimalNameSetterPostProcessor 的 @Component 注解去掉,并编写一个新的后置处理器:

@Component
public class AnimalProcessorRegisterPostProcessor implements BeanDefinitionRegistryPostProcessor {
    
    @Override
    public void postProcessBeanDefinitionRegistry(BeanDefinitionRegistry registry) throws BeansException {
        registry.registerBeanDefinition("animalNameSetterPostProcessor", 
                new RootBeanDefinition(AnimalNameSetterPostProcessor.class));
    }
    
    @Override
    public void postProcessBeanFactory(ConfigurableListableBeanFactory beanFactory) throws BeansException {
    
    }
}

重新运行 main 方法,发现运行效果与前面一致,特性得以验证。

5. 三种后置处理器的对比

BeanPostProcessor
BeanFactoryPostProcessor
BeanDefinitionRegistryPostProcessor

处理目标

bean 实例

BeanDefinition

BeanDefinition、.class文件等

执行时机

bean 的初始化阶段前后(已创建出 bean 对象)

BeanDefinition 解析完毕并注册进 BeanFactory 之后(此时 bean 未实例化)

配置文件、配置类已解析完毕并注册进 BeanFactory,但还没有被 BeanFactoryPostProcessor 处理

可操作的空间

给 bean 的属性赋值、创建代理对象等

给 BeanDefinition 中增删属性、移除 BeanDefinition 等

向 BeanFactory中注册新的 BeanDefinition

上一页Spring IOC下一页Java FrameWorks

最后更新于2年前

这有帮助吗?

img
img