Transformation 和 Action 常用算子
1. Transformation
spark 常用的 Transformation 算子如下表:
Transformation 算子
Meaning(含义)
map(func)
对原 RDD 中每个元素运用 func 函数,并生成新的 RDD
filter(func)
对原 RDD 中每个元素使用func 函数进行过滤,并生成新的 RDD
flatMap(func)
与 map 类似,但是每一个输入的 item 被映射成 0 个或多个输出的 items( func 返回类型需要为 Seq )。
mapPartitions(func)
与 map 类似,但函数单独在 RDD 的每个分区上运行, func函数的类型为 Iterator\ => Iterator\ ,其中 T 是 RDD 的类型,即 RDD[T]
mapPartitionsWithIndex(func)
与 mapPartitions 类似,但 func 类型为 (Int, Iterator\) => Iterator\ ,其中第一个参数为分区索引
sample(withReplacement, fraction, seed)
数据采样,有三个可选参数:设置是否放回(withReplacement)、采样的百分比(fraction)、随机数生成器的种子(seed);
union(otherDataset)
合并两个 RDD
intersection(otherDataset)
求两个 RDD 的交集
distinct([numTasks]))
去重
groupByKey([numTasks])
按照 key 值进行分区,即在一个 (K, V) 对的 dataset 上调用时,返回一个 (K, Iterable\)
Note: 如果分组是为了在每一个 key 上执行聚合操作(例如,sum 或 average),此时使用 reduceByKey
或 aggregateByKey
性能会更好
Note: 默认情况下,并行度取决于父 RDD 的分区数。可以传入 numTasks
参数进行修改。
reduceByKey(func, [numTasks])
按照 key 值进行分组,并对分组后的数据执行归约操作。
aggregateByKey(zeroValue,numPartitions)(seqOp, combOp, [numTasks])
当调用(K,V)对的数据集时,返回(K,U)对的数据集,其中使用给定的组合函数和 zeroValue 聚合每个键的值。与 groupByKey 类似,reduce 任务的数量可通过第二个参数进行配置。
sortByKey([ascending], [numTasks])
按照 key 进行排序,其中的 key 需要实现 Ordered 特质,即可比较
join(otherDataset, [numTasks])
在一个 (K, V) 和 (K, W) 类型的 dataset 上调用时,返回一个 (K, (V, W)) pairs 的 dataset,等价于内连接操作。如果想要执行外连接,可以使用 leftOuterJoin
, rightOuterJoin
和 fullOuterJoin
等算子。
cogroup(otherDataset, [numTasks])
在一个 (K, V) 对的 dataset 上调用时,返回一个 (K, (Iterable\, Iterable\)) tuples 的 dataset。
cartesian(otherDataset)
在一个 T 和 U 类型的 dataset 上调用时,返回一个 (T, U) 类型的 dataset(即笛卡尔积)。
coalesce(numPartitions)
将 RDD 中的分区数减少为 numPartitions。
repartition(numPartitions)
随机重新调整 RDD 中的数据以创建更多或更少的分区,并在它们之间进行平衡。
repartitionAndSortWithinPartitions(partitioner)
根据给定的 partitioner(分区器)对 RDD 进行重新分区,并对分区中的数据按照 key 值进行排序。这比调用 repartition
然后再 sorting(排序)效率更高,因为它可以将排序过程推送到 shuffle 操作所在的机器。
下面分别给出这些算子的基本使用示例:
1.1 map
1.2 filter
1.3 flatMap
flatMap(func)
与 map
类似,但每一个输入的 item 会被映射成 0 个或多个输出的 items( func 返回类型需要为 Seq
)。
flatMap 这个算子在日志分析中使用概率非常高,这里进行一下演示:拆分输入的每行数据为单个单词,并赋值为 1,代表出现一次,之后按照单词分组并统计其出现总次数,代码如下:
1.4 mapPartitions
与 map 类似,但函数单独在 RDD 的每个分区上运行, func函数的类型为 Iterator<T> => Iterator<U>
(其中 T 是 RDD 的类型),即输入和输出都必须是可迭代类型。
1.5 mapPartitionsWithIndex
与 mapPartitions 类似,但 func 类型为 (Int, Iterator<T>) => Iterator<U>
,其中第一个参数为分区索引。
1.6 sample
数据采样。有三个可选参数:设置是否放回 (withReplacement)、采样的百分比 (fraction)、随机数生成器的种子 (seed) :
1.7 union
合并两个 RDD:
1.8 intersection
求两个 RDD 的交集:
1.9 distinct
去重:
1.10 groupByKey
按照键进行分组:
1.11 reduceByKey
按照键进行归约操作:
1.12 sortBy & sortByKey
按照键进行排序:
按照指定元素进行排序:
1.13 join
在一个 (K, V) 和 (K, W) 类型的 Dataset 上调用时,返回一个 (K, (V, W)) 的 Dataset,等价于内连接操作。如果想要执行外连接,可以使用 leftOuterJoin
, rightOuterJoin
和 fullOuterJoin
等算子。
1.14 cogroup
在一个 (K, V) 对的 Dataset 上调用时,返回多个类型为 (K, (Iterable\, Iterable\)) 的元组所组成的 Dataset。
1.15 cartesian
计算笛卡尔积:
1.16 aggregateByKey
当调用(K,V)对的数据集时,返回(K,U)对的数据集,其中使用给定的组合函数和 zeroValue 聚合每个键的值。与 groupByKey
类似,reduce 任务的数量可通过第二个参数 numPartitions
进行配置。示例如下:
这里使用了 numSlices = 2
指定 aggregateByKey 父操作 parallelize 的分区数量为 2,其执行流程如下:
基于同样的执行流程,如果 numSlices = 1
,则意味着只有输入一个分区,则其最后一步 combOp 相当于是无效的,执行结果为:
同样的,如果每个单词对一个分区,即 numSlices = 6
,此时相当于求和操作,执行结果为:
aggregateByKey(zeroValue = 0,numPartitions = 3)
的第二个参数 numPartitions
决定的是输出 RDD 的分区数量,想要验证这个问题,可以对上面代码进行改写,使用 getNumPartitions
方法获取分区数量:
2. Action
Spark 常用的 Action 算子如下:
Action(动作)
Meaning(含义)
reduce(func)
使用函数func执行归约操作
collect()
以一个 array 数组的形式返回 dataset 的所有元素,适用于小结果集。
count()
返回 dataset 中元素的个数。
first()
返回 dataset 中的第一个元素,等价于 take(1)。
take(n)
将数据集中的前 n 个元素作为一个 array 数组返回。
takeSample(withReplacement, num, [seed])
对一个 dataset 进行随机抽样
takeOrdered(n, [ordering])
按自然顺序(natural order)或自定义比较器(custom comparator)排序后返回前 n 个元素。只适用于小结果集,因为所有数据都会被加载到驱动程序的内存中进行排序。
saveAsTextFile(path)
将 dataset 中的元素以文本文件的形式写入本地文件系统、HDFS 或其它 Hadoop 支持的文件系统中。Spark 将对每个元素调用 toString 方法,将元素转换为文本文件中的一行记录。
saveAsSequenceFile(path)
将 dataset 中的元素以 Hadoop SequenceFile 的形式写入到本地文件系统、HDFS 或其它 Hadoop 支持的文件系统中。该操作要求 RDD 中的元素需要实现 Hadoop 的 Writable 接口。对于 Scala 语言而言,它可以将 Spark 中的基本数据类型自动隐式转换为对应 Writable 类型。(目前仅支持 Java and Scala)
saveAsObjectFile(path)
使用 Java 序列化后存储,可以使用 SparkContext.objectFile()
进行加载。(目前仅支持 Java and Scala)
countByKey()
计算每个键出现的次数。
foreach(func)
遍历 RDD 中每个元素,并对其执行fun函数
2.1 reduce
使用函数func执行归约操作:
2.2 takeOrdered
按自然顺序(natural order)或自定义比较器(custom comparator)排序后返回前 n 个元素。需要注意的是 takeOrdered
使用隐式参数进行隐式转换,以下为其源码。所以在使用自定义排序时,需要继承 Ordering[T]
实现自定义比较器,然后将其作为隐式参数引入。
自定义规则排序:
2.3 countByKey
计算每个键出现的次数:
2.4 saveAsTextFile
将 dataset 中的元素以文本文件的形式写入本地文件系统、HDFS 或其它 Hadoop 支持的文件系统中。Spark 将对每个元素调用 toString 方法,将元素转换为文本文件中的一行记录。
3. 参考资料
最后更新于
这有帮助吗?