大数据学习指南
  • README
  • Storm
    • Storm和流处理简介
    • Storm集成Kakfa
    • Storm集群环境搭建
    • Storm编程模型详解
    • Storm核心概念详解
    • Storm三种打包方式对比分析
    • Storm集成Redis详解
    • Storm集成HBase和HDFS
    • Storm单机环境搭建
  • HBase
    • HBase过滤器详解
    • HBase的 SQL 中间层Phoenix
    • HBase常用 Shell 命令
    • HBase系统架构及数据结构
    • HBase集群环境搭建
    • HBase容灾与备份
    • HBase Java API
    • HBase协处理器详解
    • Spring Boot 整合 Mybatis + Phoenix
    • HBase简介
    • HBase单机环境搭建
  • Flink
    • Flink 窗口模型
    • Flink 状态管理与检查点机制
    • Flink核心概念综述
    • Flink开发环境搭建
    • Flink Sink
    • Flink Data Source
    • Flink 中使用 RocksDB 状态后端
    • Flink Transformation
    • Flink Standalone 集群部署
  • Spark
    • Spark SQL
      • Spark SQL JOIN操作
      • DataFrame和Dataset简介
      • Spark SQL 常用聚合函数
      • Structured API基本使用
      • Spark SQL 外部数据源
    • Spark Streaming
      • Spark Streaming 基本操作
      • Spark Streaming 整合 Flume
      • Spark Streaming 整合 Kafka
      • Spark Streaming 简介
    • Spark Core
      • Transformation 和 Action 常用算子
      • Spark累加器与广播变量
      • 基于ZooKeeper搭建Spark高可用集群
      • Spark运行模式与作业提交
      • Spark开发环境搭建
      • 弹性式数据集RDD
      • Spark简介
  • Scala
    • 类和对象
    • 集合类型
    • 隐式转换和隐式参数
    • 流程控制语句
    • 继承和特质
    • 函数 & 闭包 & 柯里化
    • Scala数组
    • Scala基本数据类型和运算符
    • 模式匹配
    • Scala List & Set
    • Scala简介及开发环境配置
    • 类型参数
    • Scala Map & Tuple
  • Hive
    • Hive实现WordCount详解
    • Hive常用DDL操作
    • Hive视图和索引
    • Linux环境下Hive的安装部署
    • HiveCLI和Beeline命令行的基本使用
    • Hive常用DML操作
    • Hive分区表和分桶表
    • Hive简介及核心概念
    • Hive数据查询详解
    • Hive SQL的编译过程
  • Hadoop
    • 分布式计算框架—MapReduce
    • HDFS Java API 的使用
    • Hadoop单机环境搭建
    • HDFS常用Shell命令
    • Hadoop极简入门
    • MapReduce编程模型和计算框架架构原理
    • 基于Zookeeper搭建Hadoop高可用集群
    • Hadoop集群环境搭建
    • 集群资源管理器—YARN
    • Hadoop分布式文件系统—HDFS
  • 前言
    • 大数据框架对比:Hadoop、Storm、Samza、Spark和Flink
由 GitBook 提供支持
在本页
  • 1. 简单聚合
  • 1.1 数据准备
  • 1.2 count
  • 1.3 countDistinct
  • 1.4 approx_count_distinct
  • 1.5 first & last
  • 1.6 min & max
  • 1.7 sum & sumDistinct
  • 1.8 avg
  • 1.9 数学函数
  • 1.10 聚合数据到集合
  • 2. 分组聚合
  • 2.1 简单分组
  • 2.2 分组聚合
  • 3. 自定义聚合函数
  • 3.1 有类型的自定义函数
  • 3.2 无类型的自定义聚合函数
  • 4. 参考资料

这有帮助吗?

  1. Spark
  2. Spark SQL

Spark SQL 常用聚合函数

上一页DataFrame和Dataset简介下一页Structured API基本使用

最后更新于4年前

这有帮助吗?

转载:

1. 简单聚合

1.1 数据准备

// 需要导入 spark sql 内置的函数包
import org.apache.spark.sql.functions._

val spark = SparkSession.builder().appName("aggregations").master("local[2]").getOrCreate()
val empDF = spark.read.json("/usr/file/json/emp.json")
// 注册为临时视图,用于后面演示 SQL 查询
empDF.createOrReplaceTempView("emp")
empDF.show()

注:emp.json 可以从本仓库的 目录下载。

1.2 count

// 计算员工人数
empDF.select(count("ename")).show()

1.3 countDistinct

// 计算姓名不重复的员工人数
empDF.select(countDistinct("deptno")).show()

1.4 approx_count_distinct

通常在使用大型数据集时,你可能关注的只是近似值而不是准确值,这时可以使用 approx_count_distinct 函数,并可以使用第二个参数指定最大允许误差。

empDF.select(approx_count_distinct ("ename",0.1)).show()

1.5 first & last

获取 DataFrame 中指定列的第一个值或者最后一个值。

empDF.select(first("ename"),last("job")).show()

1.6 min & max

获取 DataFrame 中指定列的最小值或者最大值。

empDF.select(min("sal"),max("sal")).show()

1.7 sum & sumDistinct

求和以及求指定列所有不相同的值的和。

empDF.select(sum("sal")).show()
empDF.select(sumDistinct("sal")).show()

1.8 avg

内置的求平均数的函数。

empDF.select(avg("sal")).show()

1.9 数学函数

Spark SQL 中还支持多种数学聚合函数,用于通常的数学计算,以下是一些常用的例子:

// 1.计算总体方差、均方差、总体标准差、样本标准差
empDF.select(var_pop("sal"), var_samp("sal"), stddev_pop("sal"), stddev_samp("sal")).show()

// 2.计算偏度和峰度
empDF.select(skewness("sal"), kurtosis("sal")).show()

// 3. 计算两列的皮尔逊相关系数、样本协方差、总体协方差。(这里只是演示,员工编号和薪资两列实际上并没有什么关联关系)
empDF.select(corr("empno", "sal"), covar_samp("empno", "sal"),covar_pop("empno", "sal")).show()

1.10 聚合数据到集合

scala>  empDF.agg(collect_set("job"), collect_list("ename")).show()

输出:
+--------------------+--------------------+
|    collect_set(job)| collect_list(ename)|
+--------------------+--------------------+
|[MANAGER, SALESMA...|[SMITH, ALLEN, WA...|
+--------------------+--------------------+

2. 分组聚合

2.1 简单分组

empDF.groupBy("deptno", "job").count().show()
//等价 SQL
spark.sql("SELECT deptno, job, count(*) FROM emp GROUP BY deptno, job").show()

输出:
+------+---------+-----+
|deptno|      job|count|
+------+---------+-----+
|    10|PRESIDENT|    1|
|    30|    CLERK|    1|
|    10|  MANAGER|    1|
|    30|  MANAGER|    1|
|    20|    CLERK|    2|
|    30| SALESMAN|    4|
|    20|  ANALYST|    2|
|    10|    CLERK|    1|
|    20|  MANAGER|    1|
+------+---------+-----+

2.2 分组聚合

empDF.groupBy("deptno").agg(count("ename").alias("人数"), sum("sal").alias("总工资")).show()
// 等价语法
empDF.groupBy("deptno").agg("ename"->"count","sal"->"sum").show()
// 等价 SQL
spark.sql("SELECT deptno, count(ename) ,sum(sal) FROM emp GROUP BY deptno").show()

输出:
+------+----+------+
|deptno|人数|总工资|
+------+----+------+
|    10|   3|8750.0|
|    30|   6|9400.0|
|    20|   5|9375.0|
+------+----+------+

3. 自定义聚合函数

Scala 提供了两种自定义聚合函数的方法,分别如下:

  • 有类型的自定义聚合函数,主要适用于 DataSet;

  • 无类型的自定义聚合函数,主要适用于 DataFrame。

以下分别使用两种方式来自定义一个求平均值的聚合函数,这里以计算员工平均工资为例。两种自定义方式分别如下:

3.1 有类型的自定义函数

import org.apache.spark.sql.expressions.Aggregator
import org.apache.spark.sql.{Encoder, Encoders, SparkSession, functions}

// 1.定义员工类,对于可能存在 null 值的字段需要使用 Option 进行包装
case class Emp(ename: String, comm: scala.Option[Double], deptno: Long, empno: Long,
               hiredate: String, job: String, mgr: scala.Option[Long], sal: Double)

// 2.定义聚合操作的中间输出类型
case class SumAndCount(var sum: Double, var count: Long)

/* 3.自定义聚合函数
 * @IN  聚合操作的输入类型
 * @BUF reduction 操作输出值的类型
 * @OUT 聚合操作的输出类型
 */
object MyAverage extends Aggregator[Emp, SumAndCount, Double] {

    // 4.用于聚合操作的的初始零值
    override def zero: SumAndCount = SumAndCount(0, 0)

    // 5.同一分区中的 reduce 操作
    override def reduce(avg: SumAndCount, emp: Emp): SumAndCount = {
        avg.sum += emp.sal
        avg.count += 1
        avg
    }

    // 6.不同分区中的 merge 操作
    override def merge(avg1: SumAndCount, avg2: SumAndCount): SumAndCount = {
        avg1.sum += avg2.sum
        avg1.count += avg2.count
        avg1
    }

    // 7.定义最终的输出类型
    override def finish(reduction: SumAndCount): Double = reduction.sum / reduction.count

    // 8.中间类型的编码转换
    override def bufferEncoder: Encoder[SumAndCount] = Encoders.product

    // 9.输出类型的编码转换
    override def outputEncoder: Encoder[Double] = Encoders.scalaDouble
}

object SparkSqlApp {

    // 测试方法
    def main(args: Array[String]): Unit = {

        val spark = SparkSession.builder().appName("Spark-SQL").master("local[2]").getOrCreate()
        import spark.implicits._
        val ds = spark.read.json("file/emp.json").as[Emp]

        // 10.使用内置 avg() 函数和自定义函数分别进行计算,验证自定义函数是否正确
        val myAvg = ds.select(MyAverage.toColumn.name("average_sal")).first()
        val avg = ds.select(functions.avg(ds.col("sal"))).first().get(0)

        println("自定义 average 函数 : " + myAvg)
        println("内置的 average 函数 : " + avg)
    }
}

自定义聚合函数需要实现的方法比较多,这里以绘图的方式来演示其执行流程,以及每个方法的作用:

关于 zero,reduce,merge,finish 方法的作用在上图都有说明,这里解释一下中间类型和输出类型的编码转换,这个写法比较固定,基本上就是两种情况:

  • 自定义类型 Case Class 或者元组就使用 Encoders.product 方法;

  • 基本类型就使用其对应名称的方法,如 scalaByte,scalaFloat,scalaShort 等,示例如下:

override def bufferEncoder: Encoder[SumAndCount] = Encoders.product
override def outputEncoder: Encoder[Double] = Encoders.scalaDouble

3.2 无类型的自定义聚合函数

理解了有类型的自定义聚合函数后,无类型的定义方式也基本相同,代码如下:

import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction}
import org.apache.spark.sql.types._
import org.apache.spark.sql.{Row, SparkSession}

object MyAverage extends UserDefinedAggregateFunction {
  // 1.聚合操作输入参数的类型,字段名称可以自定义
  def inputSchema: StructType = StructType(StructField("MyInputColumn", LongType) :: Nil)

  // 2.聚合操作中间值的类型,字段名称可以自定义
  def bufferSchema: StructType = {
    StructType(StructField("sum", LongType) :: StructField("MyCount", LongType) :: Nil)
  }

  // 3.聚合操作输出参数的类型
  def dataType: DataType = DoubleType

  // 4.此函数是否始终在相同输入上返回相同的输出,通常为 true
  def deterministic: Boolean = true

  // 5.定义零值
  def initialize(buffer: MutableAggregationBuffer): Unit = {
    buffer(0) = 0L
    buffer(1) = 0L
  }

  // 6.同一分区中的 reduce 操作
  def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
    if (!input.isNullAt(0)) {
      buffer(0) = buffer.getLong(0) + input.getLong(0)
      buffer(1) = buffer.getLong(1) + 1
    }
  }

  // 7.不同分区中的 merge 操作
  def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
    buffer1(0) = buffer1.getLong(0) + buffer2.getLong(0)
    buffer1(1) = buffer1.getLong(1) + buffer2.getLong(1)
  }

  // 8.计算最终的输出值
  def evaluate(buffer: Row): Double = buffer.getLong(0).toDouble / buffer.getLong(1)
}

object SparkSqlApp {

  // 测试方法
  def main(args: Array[String]): Unit = {

    val spark = SparkSession.builder().appName("Spark-SQL").master("local[2]").getOrCreate()
    // 9.注册自定义的聚合函数
    spark.udf.register("myAverage", MyAverage)

    val df = spark.read.json("file/emp.json")
    df.createOrReplaceTempView("emp")

    // 10.使用自定义函数和内置函数分别进行计算
    val myAvg = spark.sql("SELECT myAverage(sal) as avg_sal FROM emp").first()
    val avg = spark.sql("SELECT avg(sal) as avg_sal FROM emp").first()

    println("自定义 average 函数 : " + myAvg)
    println("内置的 average 函数 : " + avg)
  }
}

4. 参考资料

  1. Matei Zaharia, Bill Chambers . Spark: The Definitive Guide[M] . 2018-02

2020-10-19-xRp7Jg
SparkSQL常用聚合函数
resources